Article

TOR in the immune system.

Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, USA.
Current opinion in cell biology (Impact Factor: 14.15). 09/2011; 23(6):707-15. DOI: 10.1016/j.ceb.2011.08.006
Source: PubMed

ABSTRACT The target of rapamycin (TOR) is a crucial intracellular regulator of the immune system. Recent studies have suggested that immunosuppression by TOR inhibition may be mediated by modulating differentiation of both effector and regulatory CD4 T cell subsets. However, it was paradoxically shown that inhibiting TOR signaling has immunostimulatory effects on the generation of long-lived memory CD8 T cells. Beneficial effects of TOR inhibition have also been observed with dendritic cells and hematopoietic stem cells. This immune modulation may contribute to lifespan extension seen in mice with mTOR inhibition. Here, we review recent findings on TOR modulation of innate and adaptive immune responses, and discuss potential applications of regulating TOR to provide longer and healthier immunity.

0 Bookmarks
 · 
207 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fish, mice and men rely on two coexisting myeloid blood cell systems. One is sustained by hematopoietic progenitor cells, which reside in specialized microenvironments in hematopoietic organs and give rise to cells of the monocyte lineage. The other system corresponds to the independent lineage of self-renewing tissue macrophages, which colonize organs during embryonic development and are maintained during later life by proliferation in local tissue microenvironments. However, little is known about the nature of these microenvironments and their regulation. Moreover, many vertebrate tissues contain a mix of both tissue-resident and monocyte-derived macrophages, posing a challenge to the study of lineage-specific regulatory mechanisms and function. This review highlights how research in the simple model organism Drosophila melanogaster can address many of these outstanding questions in the field. Drawing parallels between hematopoiesis in Drosophila and vertebrates, we illustrate the evolutionary conservation of the two myeloid systems across animal phyla. Much like vertebrates, Drosophila possesses a lineage of self-renewing tissue-resident macrophages, as well as a 'definitive' lineage of macrophages that derive from hematopoiesis in the progenitor-based lymph gland. We summarize key findings from Drosophila hematopoiesis that illustrate how local microenvironments, systemic signals, immune challenges and nervous inputs regulate adaptive responses of tissue-resident macrophages and progenitor-based hematopoiesis to achieve optimal fitness of the animal.
    Experimental hematology. 06/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: T lymphocytes are a central component, and play an important role in controlling immunity and immunological diseases. Recent studies have shown that T cell metabolism is highly dynamic and has a tremendous impact on the modulation of T lymphocyte immunity. Specific metabolic pathways meet energy and biosynthetic requirements that can support specific T cell functional activities in immunity and immunological diseases. This review summarizes the recent progresses about the modulatory role of cell metabolism in T cell development, differentiation, activation and function in immunity. These might provide new opportunities to modulate the immune responses and treat clinical immunological diseases. This article is protected by copyright. All rights reserved.
    Immunology 05/2014; · 3.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Selective translational control of gene expression is emerging as a principal mechanism for the regulation of protein abundance that determines a variety of functions in both the adaptive immune system and the innate immune system. The translation-initiation factor eIF4E acts as a node for such regulation, but non-eIF4E mechanisms are also prevalent. Studies of 'translatomes' (genome-wide pools of translated mRNA) have facilitated mechanistic discoveries by identifying key regulatory components, including transcription factors, that are under translational control. Here we review the current knowledge on mechanisms that regulate translation and thereby modulate immunological function. We further describe approaches for measuring and analyzing translatomes and how such powerful tools can facilitate future insights on the role of translational control in the immune system.
    Nature immunology. 05/2014; 15(6):503-11.

Full-text (2 Sources)

Download
72 Downloads
Available from
May 30, 2014