Regulation of endothelial cell activation and angiogenesis by injectable peptide nanofibers.

School of Energy, Environmental, Biological, and Medical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA.
Acta biomaterialia (Impact Factor: 5.68). 09/2011; 8(1):154-64. DOI: 10.1016/j.actbio.2011.08.029
Source: PubMed

ABSTRACT RAD16-II peptide nanofibers are promising for vascular tissue engineering and were shown to enhance angiogenesis in vitro and in vivo, although the mechanism remains unknown. We hypothesized that the pro-angiogenic effect of RAD16-II results from low-affinity integrin-dependent interactions of microvascular endothelial cells (MVECs) with RAD motifs. Mouse MVECs were cultured on RAD16-II with or without integrin and MAPK/ERK pathway inhibitors, and angiogenic responses were quantified. The results were validated in vivo using a mouse diabetic wound healing model with impaired neovascularization. RAD16-II stimulated spontaneous capillary morphogenesis, and increased β(3) integrin phosphorylation and VEGF expression in MVECs. These responses were abrogated in the presence of β(3) and MAPK/ERK pathway inhibitors or on the control peptide without RAD motifs. Wide-spectrum integrin inhibitor echistatin completely abolished RAD16-II-mediated capillary morphogenesis in vitro and neovascularization and VEGF expression in the wound in vivo. The addition of the RGD motif to RAD16-II did not change nanofiber architecture or mechanical properties, but resulted in significant decrease in capillary morphogenesis. Overall, these results suggest that low-affinity non-specific interactions between cells and RAD motifs can trigger angiogenic responses via phosphorylation of β(3) integrin and MAPK/ERK pathway, indicating that low-affinity sequences can be used to functionalize biocompatible materials for the regulation of cell migration and angiogenesis, thus expanding the current pool of available motifs that can be used for such functionalization. Incorporation of RAD or similar motifs into protein engineered or hybrid peptide scaffolds may represent a novel strategy for vascular tissue engineering and will further enhance design opportunities for new scaffold materials.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: KNDC1 (kinase noncatalytic C-lobe domain containing 1), a brain-specific Ras guanine nucleotide exchange factor, controls the negative regulation of neuronal dendrite growth. However, the effect of KNDC1 on cellular senescence remains to be elucidated. The present study investigated the impact of KNDC1 knockdown on human endothelial cell senescence and the mechanisms underlying this effect. Human umbilical vein endothelial cells (HUVECs) cultured in vitro were used as a model of biological aging. Senescence‑associated β-galactosidase staining was used to detect cellular senescence and flow cytometry was employed to determine cell cycle progression. Quantitative polymerase chain reaction (qPCR) and western blot analysis were utilized to investigate mRNA transcription and protein expression. In the HUVECs, a senescence-like phenotypes developed with increasing passage number in vitro, which were associated with a progressive increase in the transcription and expression of KNDC1. KNDC1 knockdown promoted cell proliferation and partially reversed cellular senescence and cell cycle arrest in the G0/G1 phase in aging HUVECs. Investigations into the mechanism underlying this effect demonstrated that KNDC1 knockdown promoted HUVEC proliferation via the extracellular signal-regulated kinase signaling pathway and delayed HUVEC senescence by inhibiting the p53-p21-p16 transduction cascade. In addition, the promotion of the capillary tube network formation and the increased expression of endothelial nitric oxide synthase revealed that the activity and function of endothelial cells were enhanced. In conclusion, KNDC1 knockdown delayed endothelial cell senescence and promoted HUVEC activity and function. These results demonstrated that KNDC1 may be a novel therapeutic target for the development of agents to extend human life.
    Molecular Medicine Reports 04/2014; · 1.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Robert Langer’s work with Judah Folkman brought angiogenesis into the spotlight and herein we focus on an offshoot of this work – biomaterial-driven therapeutic angiogenesis. Angiogenic biomaterials are expected to improve vascularization and integration in tissue engineering, wound healing and medical device applications. This review focuses on therapeutic methacrylic acid copolymers, highlighting some new approaches to use these materials. Such copolymers require no biological components (drugs or cells) to promote in vivo vascularization; they are therapeutic polymers.
    Israel Journal of Chemistry (Online) 10/2013; 53(9‐10). · 2.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective: The effect of chronic hyperglycemic exposure on endothelial cell (EC) phenotype, impaired wound neovascularization, and healing is not completely understood. The hypotheses are: 1) chronic exposure to diabetic conditions in vivo impairs the angiogenic potential of ECs and 2) this deficiency can be improved by an extracellular microenvironment of angiogenic peptide nanofibers. Approach: Angiogenic potential of microvascular ECs isolated from diabetic (db/db) and wild type (wt) mice was assessed by quantifying migration, proliferation, apoptosis, capillary morphogenesis, and vascular endothelial growth factor (VEGF) expression for cell cultures on Matrigel (Millipore, Billerica, MA) or nanofibers under normoglycemic conditions. The in vivo effects of nanofiber treatment on wound vascularization were determined using two mouse models of diabetic wound healing. Results: Diabetic ECs showed significant impairments in migration, VEGF expression, and capillary morphogenesis. The nanofiber microenvironment restored capillary morphogenesis and VEGF expression and significantly increased proliferation and decreased cell apoptosis of diabetic cells versus wt controls. In diabetic wounds, nanofibers significantly enhanced EC infiltration, neovascularization, and VEGF protein levels, as compared to saline treatment; this effect was observed even in MMP9 knockout mice with endothelial progenitor cell (EPC) deficiency. Innovation: The results suggest a novel approach for correcting diabetes-induced endothelial deficiencies via cell interactions with a nanofiber-based provisional matrix in the absence of external angiogenic stimuli. Conclusion: Impaired endothelial angiogenic potential can be restored by angiogenic cell stimulation in the nanofiber microenvironment; this suggests that nanofiber technology for diabetic wound healing and treatment of other diabetes-induced vascular deficiencies is promising.
    Advances in wound care. 11/2014; 3(11):717-728.

Full-text (2 Sources)

Available from
May 15, 2014