Article

Molecular Mechanisms of Long Noncoding RNAs

Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
Molecular cell (Impact Factor: 14.46). 09/2011; 43(6):904-14. DOI: 10.1016/j.molcel.2011.08.018
Source: PubMed

ABSTRACT Long noncoding RNAs (lncRNAs) are an important class of pervasive genes involved in a variety of biological functions. Here we discuss the emerging archetypes of molecular functions that lncRNAs execute-as signals, decoys, guides, and scaffolds. For each archetype, examples from several disparate biological contexts illustrate the commonality of the molecular mechanisms, and these mechanistic views provide useful explanations and predictions of biological outcomes. These archetypes of lncRNA function may be a useful framework to consider how lncRNAs acquire properties as biological signal transducers and hint at their possible origins in evolution. As new lncRNAs are being discovered at a rapid pace, the molecular mechanisms of lncRNAs are likely to be enriched and diversified.

0 Bookmarks
 · 
180 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metastasis is a crucial hallmark of cancer progression, which involves numerous factors including the degradation of the extracellular matrix (ECM), the epithelial-to-mesenchymal transition (EMT), tumor angiogenesis, the development of an inflammatory tumor microenvironment, and defects in programmed cell death. Programmed cell death, such as apoptosis, autophagy, and necroptosis, plays crucial roles in metastatic processes. Malignant tumor cells must overcome these various forms of cell death to metastasize. This review summarizes the recent advances in the understanding of the mechanisms by which key regulators of apoptosis, autophagy, and necroptosis participate in cancer metastasis and discusses the crosstalk between apoptosis, autophagy, and necroptosis involved in the regulation of cancer metastasis.
    Molecular Cancer 02/2015; 14(1):48. DOI:10.1186/s12943-015-0321-5 · 5.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NF-κB is a critical link between inflammation and cancer, but whether long non-coding RNAs (lncRNAs) regulate its activation remains unknown. Here, we identify an NF-KappaB Interacting LncRNA (NKILA), which is upregulated by NF-κB, binds to NF-κB/IκB, and directly masks phosphorylation motifs of IκB, thereby inhibiting IKK-induced IκB phosphorylation and NF-κB activation. Unlike DNA that is dissociated from NF-κB by IκB, NKILA interacts with NF-κB/IκB to form a stable complex. Importantly, NKILA is essential to prevent over-activation of NF-κB pathway in inflammation-stimulated breast epithelial cells. Furthermore, low NKILA expression is associated with breast cancer metastasis and poor patient prognosis. Therefore, lncRNAs can directly interact with functional domains of signaling proteins, serving as a class of NF-κB modulators to suppress cancer metastasis. Copyright © 2015 Elsevier Inc. All rights reserved.
    Cancer Cell 03/2015; 27(3):370-81. DOI:10.1016/j.ccell.2015.02.004 · 23.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The outlook on stem cell (SC) biology is shifting from a rigid hierarchical to a more flexible model in which the identity and the behavior of adult SCs, far from being fixed, are determined by the dynamic integration of cell autonomous and non-autonomous mechanisms. Within this framework, the recent discovery of thousands of non-coding RNAs (ncRNAs) with regulatory function is redefining the landscape of transcriptome regulation, highlighting the interplay of epigenetic, transcriptional, and post-transcriptional mechanisms in the specification of cell fate and in the regulation of developmental processes. Furthermore, the expression of ncRNAs is often tissue- or even cell type-specific, emphasizing their involvement in defining space, time and developmental stages in gene regulation. Such a role of ncRNAs has been investigated in embryonic and induced pluripotent SCs, and in numerous types of adult SCs and progenitors, including those of the breast, which will be the topic of this review. We will focus on ncRNAs with an important role in breast cancer, in particular in mammary cancer SCs and progenitors, and highlight the ncRNA-based circuitries whose subversion alters a number of the epigenetic, transcriptional, and post-transcriptional events that control "stemness" in the physiological setting.
    Frontiers in Genetics 01/2015; 6:72. DOI:10.3389/fgene.2015.00072

Full-text (2 Sources)

Download
2,652 Downloads
Available from
Jun 6, 2014