Article

Chromosome Catastrophes Involve Replication Mechanisms Generating Complex Genomic Rearrangements

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
Cell (Impact Factor: 33.12). 09/2011; 146(6):889-903. DOI: 10.1016/j.cell.2011.07.042
Source: PubMed

ABSTRACT Complex genomic rearrangements (CGRs) consisting of two or more breakpoint junctions have been observed in genomic disorders. Recently, a chromosome catastrophe phenomenon termed chromothripsis, in which numerous genomic rearrangements are apparently acquired in one single catastrophic event, was described in multiple cancers. Here, we show that constitutionally acquired CGRs share similarities with cancer chromothripsis. In the 17 CGR cases investigated, we observed localization and multiple copy number changes including deletions, duplications, and/or triplications, as well as extensive translocations and inversions. Genomic rearrangements involved varied in size and complexities; in one case, array comparative genomic hybridization revealed 18 copy number changes. Breakpoint sequencing identified characteristic features, including small templated insertions at breakpoints and microhomology at breakpoint junctions, which have been attributed to replicative processes. The resemblance between CGR and chromothripsis suggests similar mechanistic underpinnings. Such chromosome catastrophic events appear to reflect basic DNA metabolism operative throughout an organism's life cycle.

Download full-text

Full-text

Available from: Sau Wai Cheung, Jul 07, 2015
2 Followers
 · 
251 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Changes in gene copy number are among the most frequent mutational events in all genomes and were among the mutations for which a physical basis was first known. Yet mechanisms of gene duplication remain uncertain because formation rates are difficult to measure and mechanisms may vary with position in a genome. Duplications are compared here to deletions, which seem formally similar but can arise at very different rates by distinct mechanisms. Methods of assessing duplication rates and dependencies are described with several proposed formation mechanisms. Emphasis is placed on duplications formed in extensively studied experimental situations. Duplications studied in microbes are compared with those observed in metazoan cells, specifically those in genomes of cancer cells. Duplications, and especially their derived amplifications, are suggested to form by multistep processes often under positive selection for increased copy number. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.
    Cold Spring Harbor perspectives in biology 02/2015; 7(2). DOI:10.1101/cshperspect.a016592 · 8.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The links between recombination and replication have been appreciated for decades and it is now generally accepted that these two fundamental aspects of DNA metabolism are inseparable: Homologous recombination is essential for completion of DNA replication and vice versa. This review focuses on the roles that recombination enzymes play in underpinning genome duplication, aiding replication fork movement in the face of the many replisome barriers that challenge genome stability. These links have many conserved features across all domains of life, reflecting the conserved nature of the substrate for these reactions, DNA.
    Cold Spring Harbor perspectives in biology 10/2014; 6(11). DOI:10.1101/cshperspect.a016550 · 8.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutation is associated with developmental and hereditary disorders, aging and cancer. While we understand some mutational processes operative in human disease, most remain mysterious. We used C. elegans whole genome sequencing to model mutational signatures, analyzing 183 worm populations across 17 DNA repair-deficient backgrounds, propagated for 20 generations or exposed to carcinogens. The baseline mutation rate in C. elegans was ~1/genome/generation, not overtly altered across several DNA repair deficiencies over 20 generations. Telomere erosion led to complex chromosomal rearrangements initiated by breakage-fusion-bridge cycles and completed by simultaneously acquired, localized clusters of breakpoints. Aflatoxin-B1 induced substitutions of guanines in GpC context, as observed in aflatoxin-induced liver cancers. Mutational burden increased with impaired nucleotide excision repair. Cisplatin and mechlorethamine, DNA crosslinking agents, caused dose- and genotype-dependent signatures among indels, substitutions and rearrangements. Strikingly, both agents induced clustered rearrangements resembling 'chromoanasynthesis,' a replication-based mutational signature seen in constitutional genomic disorders, suggesting interstrand crosslinks may play a pathogenic role in such events. Cisplatin mutagenicity was most pronounced in xpf-1 mutants, suggesting this gene critically protects cells against platinum chemotherapy. Thus, experimental model systems combined with genome sequencing can recapture and mechanistically explain mutational signatures associated with human disease.
    Genome Research 07/2014; 24(10). DOI:10.1101/gr.175547.114 · 13.85 Impact Factor