The expressions of ABCC4 and ABCG2 xenobiotic transporters in human keratinocytes are proliferation-related.

Department of Dermatology and Allergology, Faculty of Medicine, University of Szeged, Hungary.
Archives for Dermatological Research (Impact Factor: 2.71). 09/2011; 304(1):57-63. DOI: 10.1007/s00403-011-1174-4
Source: PubMed

ABSTRACT Xenobiotic transporters of the ATP-binding cassette (ABC) protein superfamily play important roles in maintaining the biochemical barrier of various tissues, but their precise functions in the skin are not yet known. Screening of the expressions of the known xenobiotic transporter genes in two in vitro keratinocyte differentiation models revealed that the ABCC4 and ABCG2 transporters are highly expressed in proliferating keratinocytes, their expressions decreasing along with differentiation. Abrogation of the ABCC4 and ABCG2 protein functions by siRNA-mediated silencing and chemical inhibition did not affect the proliferation of HaCaT cells. In contrast, disruption of the ABCG2 function had no effect on normal human epidermal keratinocyte proliferation, while the inhibition of ABCC-type transporters by probenecid resulted in a striking decrease in the proliferation of the cells. These results indicate that, besides their possible therapy-modulating effects, xenobiotic transporters may contribute significantly to other keratinocyte functions, such as cell proliferation.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: UVB irradiation has been shown to trigger a broad range of changes in gene expression in human skin; however, factors governing these events are still not well understood. In this study, we show that human constitutive photomorphogenic protein-1 (huCOP1), an E3 ligase, contributes to the orchestration of UVB response of keratinocytes. Accordingly, our data show that (i) huCOP1 protein is expressed both in the nucleus and in the cytoplasm of cultured keratinocytes, (ii) UVB reduces the levels of the huCOP1 mRNA and protein, and (iii) induces changes in the subcellular localization of huCOP1. Finally, we show that gene-specific silencing of huCOP1 induces the accumulation of the tumor suppressor p53 protein, which is further increased after UVB irradiation.
    Journal of Investigative Dermatology 10/2009; 130(2):541-5. · 6.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: One of the major problems related with anticancer chemotherapy is resistance against anticancer drugs. The ATP-binding cassette (ABC) transporters are a family of transporter proteins that are responsible for drug resistance and a low bioavailability of drugs by pumping a variety of drugs out cells at the expense of ATP hydrolysis. One strategy for reversal of the resistance of tumor cells expressing ABC transporters is combined use of anticancer drugs with chemosensitizers. In this review, the physiological functions and structures of ABC transporters, and the development of chemosensitizers are described focusing on well-known proteins including P-glycoprotein, multidrug resistance associated protein, and breast cancer resistance protein.
    Cancer Cell International 11/2005; 5:30. · 2.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Central aspects of the cellular lipid trafficking mechanisms that occur during keratinocyte differentiation are still not well understood. In the past years, evidence has accumulated to suggest that members of the superfamily of adenosine triphosphate binding cassette (ABC) transporters are critically involved in the transmembrane transport of cellular lipids. To test the hypothesis that ABC molecules are potentially involved in the epidermal transport of sphingolipids, glycerophospholipids, cholesterol, and fatty acids, we performed mRNA expression profiling of all currently known ABC molecules during in vitro differentiation of human keratinocytes and HaCaT cells. We identified six ABC molecules that displayed significant regulation during differentiation of these cells. The recently cloned transporter ABCA7 was highly expressed in keratinocytes and HaCaT cells and upregulated during differentiation. Overexpression of ABCA7 in HeLa cells resulted in increased expression of intracellular and cell surface ceramide and elevated intracellular phosphatidylserine levels. Given the observation that during terminal keratinocyte differentiation intracellular and surface ceramide levels are increased, our results render ABCA7 a candidate regulator of ceramide transport in this process. In addition to ABCA7, the cholesterol transporters ABCB1 and ABCG1 and the glutathione/glucuronide sulfate transporters ABCC1, ABCC3, and ABCC4, were strongly upregulated during keratinocyte and HaCaT cell differentiation. These findings support the notion that ABCB1 and ABCG1 are potentially implicated in cholesterol transport, whereas ABCC1, ABCC3, and ABCC4 are candidate regulators of the translocation of sulfated lipids during stratum corneum keratinization. Our results suggest specific biologic functions for members of the ABC transporter family in epidermal lipid reorganization during terminal keratinocyte differentiation.
    Journal of Investigative Dermatology 10/2003; 121(3):465-74. · 6.19 Impact Factor