Article

Amelioration of 2,4,6-trinitrobenzene sulfonic acid-induced colitis in mice by immunoregulatory dendritic cells.

Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, Moriguchi, Osaka, Japan.
Journal of Gastroenterology (Impact Factor: 4.02). 09/2011; 46(12):1368-81. DOI: 10.1007/s00535-011-0460-4
Source: PubMed

ABSTRACT Dendritic cells (DCs) are widely distributed throughout the lymphoid and nonlymphoid tissues, and are important initiators of acquired immunity. They also serve as regulators by inducing self-tolerance. However, it has not been thoroughly clarified whether DCs are somehow involved in the regulation or treatment of inflammatory bowel diseases.
We established an ileitis model by transmurally injecting 2,4,6-trinitrobenzene sulfonic acid (TNBS) into the lumen of the ileocolonic junction. The kinetic movement of DCs at the inflammatory sites was analyzed histologically and by flow cytometry, and DCs obtained from the small intestine were analyzed in order to determine the expression of paired immunoglobulin-like receptor-A/B (PIR-A/B) by flow cytometry and quantitative RT-PCR. Furthermore, the regulatory role of DCs was directly determined by a transfer experiment using TNBS-induced colitis model mice.
We observed three DC subsets (PIR-A/B(high), PIR-A/B(med), and PIR-A/B(-) DCs) in the conventional DCs (cDCs) from day 3, and the number of PIR-A/B(med) cDCs increased from the time the inflammatory responses ceased (day 7). PIR-A/B(med) cDCs actually migrated to the inflamed colon, and ameliorated the colitis induced by TNBS when transferred to colitis-induced recipients. The colitis was greatly exacerbated when mice had been treated with the indoleamine-pyrrole 2,3-dioxygenase (IDO) inhibitor 1-methyltryptophan (1-mT) at the time PIR-A/B(med) cDCs were transferred, indicating that the therapeutic ability of PIR-A/B(med) cDCs is partially dependent on IDO.
The PIR-A/B(med) cDCs, which increase in number during the final stages of inflammation, can be used to treat colitis via an IDO-dependent mechanism.

0 Bookmarks
 · 
286 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Leishmania (Viannia) parasites are etiological agents of cutaneous leishmaniasis in the New World. Infection is characterized by a mixed Th1/Th2 inflammatory response, which contributes to disease pathology. However, the role of regulatory T cells (Tregs) in Leishmania (Viannia) disease pathogenesis is unclear. Using the mouse model of chronic L. (V.) panamensis infection, we examined the hypothesis that Treg functionality contributes to control of pathogenesis. Upon infection, Tregs (CD4(+)Foxp3(+)) presented with a dysregulated phenotype, in that they produced IFN-γ, expressed Tbet, and had a reduced ability to suppress T cell proliferation in vitro. Targeted ablation of Tregs resulted in enlarged lesions, increased parasite load, and enhanced production of IL-17 and IFN-γ, with no change in IL-10 and IL-13 levels. This indicated that an increased inflammatory response was commensurate with disease exacerbation and that the remaining impaired Tregs were important in regulation of disease pathology. Conversely, adoptive transfer of Tregs from naive mice halted disease progression, lowered parasite burden, and reduced cytokine production (IL-10, IL-13, IL-17, IFN-γ). Because Tregs appeared to be important for controlling infection, we hypothesized that their expansion could be used as an immunotherapeutic treatment approach. As a proof of principle, chronically infected mice were treated with rIL-2/anti-IL-2 Ab complex to expand Tregs. Treatment transitorily increased the numbers and percentage of Tregs (draining lymph node, spleen), which resulted in reduced cytokine responses, ameliorated lesions, and reduced parasite load (10(5)-fold). Thus, immunotherapy targeting Tregs could provide an alternate treatment strategy for leishmaniasis caused by Leishmania (Viannia) parasites.
    The Journal of Immunology 08/2014; 193(6). DOI:10.4049/jimmunol.1400728 · 5.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dendritic cells (DCs) may play an important role in forms of inflammatory bowel disease (IBD), such as Crohn's disease and ulcerative colitis. DCs are generally recognized as initiators of acquired immunity and also serve as regulators of both innate and acquired immunity. We used the animal model of colitis induced by dextran sodium sulfate (DSS), and examined whether DCs prepared from the colon show immunoregulatory roles in the termination of DSS-induced colitis. C57BL/6 mice exposed to DSS for 5 days developed acute colitis. DCs were isolated from the large intestinal lamina propria, and then analyzed for phenotypical, functional, and genetic data. Only PIR-A/B(low) conventional DCs (cDCs) were detected in the steady state. However, after the treatment of DSS, PIR-A/B(high) cDCs appeared and gradually increased from day 5 to day 7, at which time the DSS-induced colitis was terminated. Then, allogeneic mixed leukocyte reaction (MLR) was performed. The stimulatory activity of PIR-A/B(high) cDCs obtained on day 7 was very low, and the addition of PIR-A/B(high) cDCs suppressed the T cell proliferation in MLR, indicating the immunoregulatory role of PIR-A/B(high) cDCs. The immunoregulatory role of PIR-A/B(high) cDCs was confirmed by the in vivo transfer experiment, showing their therapeutic effect on DSS-induced colitis. The message level of TGFβi was significantly higher in PIR-A/B(high) cDCs, while that of IFN-γ was highly upregulated in PIR-A/B(low) cDCs, being well in accordance with the fact that PIR-A/B(high) cDCs showed a suppressive function against activated T cells. PIR-A/B(high) cDCs showed a suppressive function against activated T cells by producing inhibitory cytokines.
    Journal of Gastroenterology 09/2013; 49(10). DOI:10.1007/s00535-013-0879-x · 4.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Patients with type 1 autoimmune pancreatitis (AIP) have several immunologic and histologic abnormalities. It is known that depletion of B cells by rituximab is effective for treatment of IgG4-related disease (IgG4-RD) such as type 1 AIP, suggesting that B cells may be a key player in IgG4-RD. However, the role of regulatory B cells (Bregs) in type 1 AIP is unclear, and the objective of this paper is to clarify the role of Bregs in the pathophysiology of type 1 AIP by analyzing circulating Bregs.
    Pancreatology 05/2014; 14(3):193-200. DOI:10.1016/j.pan.2014.02.004 · 2.50 Impact Factor

Full-text (2 Sources)

Download
57 Downloads
Available from
May 21, 2014