Effect of combined treatment with progesterone and tamoxifen on the growth and apoptosis of human ovarian cancer cells

Department of Obstetrics and Gynecology, Sisters of Charity Hospital, State University of New York at Buffalo, Buffalo, NY 14214, USA.
Oncology Reports (Impact Factor: 2.19). 09/2011; 27(1):87-93. DOI: 10.3892/or.2011.1460
Source: PubMed

ABSTRACT Progesterone has a potential protective effect against ovarian carcinoma induced by estrogen. Progesterone is also known to cause apoptosis while tamoxifen induces growth arrest. Therefore, we attempted to determine whether combined treatment with progesterone and tamoxifen has a synergistic effect on anti-cancer activity. Although progesterone is known to cause apoptosis while tamoxifen induces growth arrest in many cancer cells, the detailed action of progesterone and tamoxifen and the anticancer effect of combined treatment have not been tested in ovarian cancer cells. Therefore, we tested the growth and apoptosis activity of progesterone and tamoxifen and the anticancer effect of combined treatment of progesterone and tamoxifen in ovarian cancer cells. Ovarian cancer cells, PA-1, were treated with progesterone, tamoxifen, or a combination of progesterone and tamoxifen. The anti-cancer effects were investigated by use of flow cytometry, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, DNA fragmentation analysis, and Western blot analysis. We found that 100 µM progesterone induced typical apoptosis in PA-1 cells. Treatment of PA-1 cells with 10 µM tamoxifen resulted in an increase in the levels of p21, p27, p16 and phospho-pRb, indicating typical G1 arrest. Co-treatment of PA-1 cells with 100 µM progesterone and 10 µM tamoxifen resulted in typical apoptosis, similar to that induced by treatment with 100 µM progesterone alone. These results indicate that progesterone caused apoptosis and tamoxifen induced G1 arrest. Combined treatment with tamoxifen and progesterone caused apoptosis similar to that induced by treatment with progesterone alone and had no additional anti-cancer effect in ovarian cancer cells.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Second mitochondria-derived activator of caspases (Smac) is a recently identified protein that is released from mitochondria in response to apoptotic stimuli and promotes apoptosis by antagonizing the inhibitor of apoptosis proteins (IAPs). Our previous study showed that ectopic overexpression of Smac sensitizes drug-resistant tumor cells to TRAIL- or paclitaxel-induced apoptosis in vitro. The present study was designed to explore the effect of the synthesized Smac N7 peptide in a human ovarian cancer cell line and xenograft model. The results showed that the single-agent Smac N7 had a non-cytotoxic effect, but it effectively enhanced TRAIL- or paclitaxel-induced inhibition of cell proliferation in a dose-dependent manner, even in TRAIL-resistant A2780 cells. When Smac N7 was combined with TRAIL or paclitaxel in treating A2780 cell tumor xenografts, synergistic anticancer effects were achieved. Furthermore, the combination therapy caused less damage in normal tissues and more apoptosis in tumor xenografts compared with TRAIL or paclitaxel alone. Increased apoptosis was associated with the downregulation of XIAP, survivin and the increased activity of caspase-3, along with an increased amount of cleaved PARP. In conclusion, this Smac N7 peptide is a promising candidate for ovarian cancer combination therapy, and Smac may be the target for the development of a novel class of anticancer drugs.
    Oncology Reports 11/2012; 29(2). DOI:10.3892/or.2012.2132
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There have been several epidemiologic studies supporting the protective role of pregnancy, although the mechanism is not clear. High level of progesterone, which is crucial in maintaining pregnancy, has been supposed to be one of the causative factors. Progesterone is produced at the corpus luteum in the early pregnancy and the placenta in the late pregnancy period. In several experimental studies, progesterone was reported to induce apoptosis of ovarian cancer cells through intrinsic and extrinsic pathways. In addition, progesterone has been shown to exert its anticancer effect through genomic and non-genomic action. The objective of this review is to discuss the protective mechanism of pregnancy against ovarian cancer focusing on the steroid hormone, progesterone.
    06/2013; 18(2):113-22. DOI:10.15430/JCP.2013.18.2.113
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Computational drug repositioning leverages computational technology and high volume of biomedical data to identify new indications for existing drugs. Since it does not require costly experiments that have a high risk of failure, it has attracted increasing interest from diverse fields such as biomedical, pharmaceutical, and informatics areas. In this study, we used pharmacogenomics data generated from pharmacogenomics studies, applied informatics and Semantic Web technologies to address the drug repositioning problem. Specifically, we explored PharmGKB to identify pharmacogenomics related associations as pharmacogenomics profiles for US Food and Drug Administration (FDA) approved breast cancer drugs. We then converted and represented these profiles in Semantic Web notations, which support automated semantic inference. We successfully evaluated the performance and efficacy of the breast cancer drug pharmacogenomics profiles by case studies. Our results demonstrate that combination of pharmacogenomics data and Semantic Web technology/Cheminformatics approaches yields better performance of new indication and possible adverse effects prediction for breast cancer drugs.
    01/2014; 19:172-82.