Methods to detect infectious human enteric viruses in environmental water samples.

Department of Hygiene, Social and Environmental Medicine, Ruhr-University Bochum, Germany.
International journal of hygiene and environmental health (Impact Factor: 2.64). 09/2011; 214(6):424-36. DOI: 10.1016/j.ijheh.2011.07.014
Source: PubMed

ABSTRACT Currently, a wide range of analytical methods is available for virus detection in environmental water samples. Molecular methods such as polymerase chain reaction (PCR) and quantitative real time PCR (qPCR) have the highest sensitivity and specificity to investigate virus contamination in water, so they are the most commonly used in environmental virology. Despite great sensitivity of PCR, the main limitation is the lack of the correlation between the detected viral genome and viral infectivity, which limits conclusions regarding the significance for public health. To provide information about the infectivity of the detected viruses, cultivation on animal cell culture is the gold standard. However, cell culture infectivity assays are laborious, time consuming and costly. Also, not all viruses are able to produce cytopathic effect and viruses such as human noroviruses have no available cell line for propagation. In this brief review, we present a summary and critical evaluation of different approaches that have been recently proposed to overcome limitations of the traditional cell culture assay and PCR assay such as integrated cell culture-PCR, detection of genome integrity, detection of capsid integrity, and measurement of oxidative damages on viral capsid protein. Techniques for rapid detection of infectious viruses such as fluorescence microscopy and automated flow cytometry have also been suggested to assess virus infectivity in water samples.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Pathogenic viruses are emerging contaminants in water which should be analyzed for water safety to preserve public health. A strategy was developed to quantify RNA and DNA viruses in parallel on chemiluminescence flow-through oligonucleotide microarrays. In order to show the proof of principle, bacteriophage MS2, ΦX174, and the human pathogenic adenovirus type 2 (hAdV2) were analyzed in spiked tap water samples on the analysis platform MCR 3. The chemiluminescence microarray imaging unit was equipped with a Peltier heater for a controlled heating of the flow cell. The efficiency and selectivity of DNA hybridization could be increased resulting in higher signal intensities and lower cross-reactivities of polymerase chain reaction (PCR) products from other viruses. The total analysis time for DNA/RNA extraction, cDNA synthesis for RNA viruses, polymerase chain reaction, single-strand separation, and oligonucleotide microarray analysis was performed in 4-4.5 h. The parallel quantification was possible in a concentration range of 9.6 × 10(5)-1.4 × 10(10) genomic units (GU)/mL for bacteriophage MS2, 1.4 × 10(5)-3.7 × 10(8) GU/mL for bacteriophage ΦX174, and 6.5 × 10(3)-1.2 × 10(5) for hAdV2, respectively, by using a measuring temperature of 40 °C. Detection limits could be calculated to 6.6 × 10(5) GU/mL for MS2, 5.3 × 10(3) GU/mL for ΦX174, and 1.5 × 10(2) GU/mL for hAdV2, respectively. Real samples of surface water and treated wastewater were tested. Generally, found concentrations of hAdV2, bacteriophage MS2, and ΦX174 were at the detection limit. Nevertheless, bacteriophages could be identified with similar results by means of quantitative PCR and oligonucleotide microarray analysis on the MCR 3.
    Analytical and Bioanalytical Chemistry 02/2014; · 3.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Torque teno virus (TTV) was surveyed in tap water collected in schools from three municipalities located in the south of Brazil. TTV genomes were found in 11.7 % (4/34) of the samples. TTV DNA was detected in 10.5 % (2/19) of the samples collected at the city of Caxias do Sul and in 25 % (2/8) of the samples from Pelotas. Those cities have a low rate of sewage treatment. All samples from Santa Cruz do Sul, which has nearly 92 % of its sewage treated, were negative. These results suggest that the amount of sewage treated may have an effect on the detection rates of TTV DNA in drinking water in a given urban area, showing a mild negative correlation (r = -0.76), when comparing the percentage of sewage treatment to the detection of TTV genomes. The detection rate of TTV was also compared with Escherichia coli, showing a strong correlation (r = 0.97), indicating that TTV may be a suitable marker of fecal contamination.
    Food and Environmental Virology 03/2013; 5(1):41-5. · 2.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Routine monitoring of relevant environmental viruses is of great importance for public health and quality assessment. Even though cell culture (i.e., viral infectivity assay) is still regarded as the golden standard, use of new strategies based on the molecular techniques significantly increased in the past years. Specific and rapid detection are main advantages of this alternative approach. Furthermore, integration of cell culture or propidium monoazide treatment with nucleic acid amplification allows for the differentiation of infectious particles. Additional recently reported approaches for the detection of viruses include, among others, whole transcriptome amplification and cell culture combined with Fourier transform infrared spectroscopy. Noteworthy is also the fact, that regardless of the selected detection method, sample preparation still remains the major bottleneck.
    Current opinion in virology. 12/2012;