Control of coronary blood flow during exercise.

Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195-7920, USA.
Exercise and sport sciences reviews (Impact Factor: 3.23). 08/2011; 40(1):37-42. DOI: 10.1097/JES.0b013e3182348cdd
Source: PubMed

ABSTRACT During exercise, coronary blood flow increases to match the augmented myocardial oxygen demand because of tachycardia. Coronary vasodilation during exercise is via a combination of feedforward and feedback control mechanisms. Feedforward control is mediated by sympathetic β-adrenoceptor vasodilation. Feedback vasodilator control is via a novel hypothesis where adenine nucleotides released from red blood cells act on endothelial purinergic receptors.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nitrite, previously considered physiologically irrelevant and a simple end product of endogenous nitric oxide (NO) metabolism, is now envisaged as a reservoir of NO to be activated in response to oxygen (O(2)) depletion. In the first part of this review, we summarize and compare the mechanisms of nitrite-dependent production of NO in selected bacteria and in eukaryotes. Bacterial nitrite reductases, which are copper or heme-containing enzymes, play an important role in the adaptation of pathogens to O(2) limitation and enable microrganisms to survive in the human body. In mammals, reduction of nitrite to NO under hypoxic conditions is carried out in tissues and blood by an array of metalloproteins, including heme-containing proteins and molybdenum enzymes. In humans, tissues play a more important role in nitrite reduction, not only because most tissues produce more NO than blood, but also because deoxyhemoglobin efficiently scavenges NO in blood. In the second part of the review, we outline the significance of nitrite in human health and disease and describe the recent advances and pitfalls of nitrite-based therapy, with special attention to its application in cardiovascular disorders, inflammation, and anti-bacterial defence. It can be concluded that nitrite (as well as nitrate-rich diet for long-term applications) may hold promise as therapeutic agent in vascular dysfunction and ischemic injury, as well as an effective compound able to promote angiogenesis.
    Antioxidants & Redox Signaling 02/2012; 17(4):684-716. · 8.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we investigated the effect of 6 weeks of swimming training on the ecto-nucleotidase activities and platelet aggregation from rats that developed hypertension in response to oral administration of L: -NAME. The rats were divided into four groups: control (n = 10), exercise (n = 10), L: -NAME (n = 10), and exercise L: -NAME (n = 10). The animals were trained five times per week in an adapted swimming system for 60 min with a gradual increase of the workload up to 5 % of animal's body weight. The results showed an increase in ATP, ADP, AMP, and adenosine hydrolysis, indicating an augment in NTPDase (from 35.3 ± 8.1 to 53.0 ± 15.1 nmol Pi/min/mg protein for ATP; and from 21.7 ± 7.0 to 46.4 ± 15.6 nmol Pi/min/mg protein for ADP as substrate), ecto-5'-nucleotidase (from 8.0 ± 5.7 to 28.1 ± 6.9 nmol Pi/min/mg protein), and ADA (from 0.8 ± 0.5 to 3.9 ± 0.8 U/L) activities in platelets from L: -NAME-treated rats when compared to other groups (p < 0.05). A significant augment on platelet aggregation in L: -NAME group was also observed. Exercise training was efficient in preventing these alterations in the exercise L: -NAME group, besides showing a significant hypotensive effect. In conclusion, our results clearly indicated a protector action of moderate intensity exercise on nucleotides and nucleoside hydrolysis and on platelet aggregation, which highlights the exercise training effect to avoid hypertension complications related to ecto-nucleotidase activities.
    Molecular and Cellular Biochemistry 08/2012; · 2.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Given the mono-functional, highly coordinated processes of cardiac excitation and contraction, the observations that regional myocardial blood flows, rMBF, are broadly heterogeneous has provoked much attention, but a clear explanation has not emerged. In isolated and in vivo heart studies the total coronary flow is found to be proportional to the rate-pressure product (systolic mean blood pressure times heart rate), a measure of external cardiac work. The same relationship might be expected on a local basis: more work requires more flow. The validity of this expectation has never been demonstrated experimentally. In this article we review the concepts linking cellular excitation and contractile work to cellular energetics and ATP demand, substrate utilization, oxygen demand, vasoregulation, and local blood flow. Mathematical models of these processes are now rather well developed. We propose that the construction of an integrated model encompassing the biophysics, biochemistry and physiology of cardiomyocyte contraction, then combined with a detailed three-dimensional structuring of the fiber bundle and sheet arrangements of the heart as a whole will frame an hypothesis that can be quantitatively evaluated to settle the prime issue: Does local work drive local flow in a predictable fashion that explains the heterogeneity? While in one sense one can feel content that work drives flow is irrefutable, the are no cardiac contractile models that demonstrate the required heterogeneity in local strain-stress-work; quite the contrary, cardiac contraction models have tended toward trying to show that work should be uniform. The object of this review is to argue that uniformity of work does not occur, and is impossible in any case, and that further experimentation and analysis are necessary to test the hypothesis.
    Annals of Biomedical Engineering 08/2012; 40(11):2379-98. · 3.23 Impact Factor


Available from