Control of Coronary Blood Flow During Exercise

Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195-7920, USA.
Exercise and sport sciences reviews (Impact Factor: 4.26). 08/2011; 40(1):37-42. DOI: 10.1097/JES.0b013e3182348cdd
Source: PubMed


GORMAN, M. W. and E.O. FEIGL. Control of coronary blood flow during exercise. Exerc. Sport Sci. Rev., Vol. 40, No. 1, pp. 37-42, 2012. During exercise, coronary blood flow increases to match the augmented myocardial oxygen demand because of tachycardia. Coronary vasodilation during exercise is via a combination of feedforward and feedback control mechanisms. Feedforward control is mediated by sympathetic beta-adrenoceptor vasodilation. Feedback vasodilator control is via a novel hypothesis where adenine nucleotides released from red blood cells act on endothelial purinergic receptors.

12 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Das mit Abstand am häufigsten verwendete „Pharmakon“ in Anästhesie und Intensivmedizin ist medizinischer Sauerstoff (O2): Jeder Patient wird im Rahmen eines chirurgischen Eingriffs oder während eines Aufenthalts auf der Intensivstation mit O2 behandelt. In der Gebrauchsinformation von medizinischem O2 werden Hypoxie bzw. Hypoxämie unterschiedlichster Pathogenese als Indikation zur Applikation von O2 angeführt: Ziel ist die Steigerung entweder des arteriellen Sauerstoffpartialdrucks (paO2) als Therapie einer Hypoxie oder des arteriellen Sauerstoffgehalts (CaO2) als Therapie einer Hypoxämie. Die meisten klinischen Indikationen für die Gabe von O2 haben sich historisch entwickelt und wurden für lange Zeit nur wenig hinterfragt, da für die kurzfristige Anwendung von O2 das relevante Nebenwirkungsspektrum meistens als unwesentlich betrachtet wurde. Dementsprechend existieren auch nur für sehr wenige Bereiche randomisierte kontrollierte Studien, die nach Maßstäben der evidenzbasierten Medizin den Nutzen supraphysiologischer Konzentrationen von O2 beweisen. Seit Längerem ist bekannt, dass spezifische Einflüsse von O2 auf die Mikrozirkulation dessen Wirksamkeit im Hinblick auf die Gewebeoxygenierung in bestimmten Situationen sogar erheblich verringern können. So führt O2 zu einer arteriolären Konstriktion, die bei einer Vielzahl von Erkrankungen mit einer Einschränkung des regionalen O2-Angebots und hierbei mit einer Verschlechterung der Gewebeoxygenierung vergesellschaftet ist. Der vorliegende Beitrag hat zum Ziel, vor diesem Hintergrund den Stellenwert von O2 als Medikament in der klinischen Medizin kritisch zu bewerten. Oxygen (O2) is the most frequently used pharmaceutical in anesthesiology and intensive care medicine: Every patient receives O2 during surgery or during a stay in the intensive care unit. Hypoxia and hypoxemia of various origins are the most typical indications which are mentioned in the prescribing information of O2: the goal of the administration of O2 is either an increase of arterial O2 partial pressure in order to treat hypoxia, or an increase of arterial O2 content in order to treat hypoxemia. Most of the indications for O2 administration were developed in former times and have seldom been questioned from that time on as the short-term side-effects of O2 are usually considered to be of minor importance. As a consequence only a small number of controlled randomized studies exist, which can demonstrate the efficacy of O2 in terms of evidence-based medicine. However, there is an emerging body of evidence that specific side-effects of O2 result in a deterioration of the microcirculation. The administration of O2 induces arteriolar constriction which will initiate a decline of regional O2 delivery and subsequently a decline of tissue oxygenation. The aim of the manuscript presented is to discuss the significance of O2 as a pharmaceutical in the clinical setting. SchlüsselwörterSauerstoffinhalationstherapie–Partialdruck–Hyperoxie–Oxidativer Stress–Mikrozirkulation KeywordsOxygen inhalation therapy–Partial pressure–Hyperoxia–Oxidative stress–Microcirculation
    Der Anaesthesist 04/2011; 60(4):292-302. DOI:10.1007/s00101-011-1888-x · 0.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Coronary microvascular function is markedly impaired by the onset of the metabolic syndrome and may be an important contributor to the increased cardiovascular events associated with this mutlifactorial disorder. Despite increasing appreciation for the role of coronary K+ channels in regulation of coronary microvascular function, the contribution of K+ channels to the deleterious influence of metabolic syndrome has not been determined. Accordingly, the overall goal of this investigation was to delineate the mechanistic contribution of K+ channels to coronary microvascular dysfunction in metabolic syndrome. Experiments were performed on Ossabaw miniature swine fed a normal maintenance diet or an excess calorie atherogenic diet that induces the classical clinical features of metabolic syndrome including obesity, insulin resistance, impaired glucose tolerance, dyslipidemia, hyperleptinemia, and atherosclerosis. Experiments involved in vivo studies of coronary blood flow in open-chest anesthetized swine as well as conscious, chronically instrumented swine and in vitro studies in isolated coronary arteries, arterioles, and vascular smooth muscle cells. We found that coronary microvascular dysfunction in the metabolic syndrome significantly impairs coronary vasodilation in response to metabolic as well as ischemic stimuli. This impairment was directly related to decreased membrane trafficking and functional expression of BKCa channels in vascular smooth muscle cells that was accompanied by augmented L-type Ca2+ channel activity and increased intracellular Ca2+ concentration. In addition, we discovered that impairment of coronary vasodilation in the metabolic syndrome is mediated by reductions in the functional contribution of voltage-dependent K+ channels to the dilator response. Taken together, findings from this investigation demonstrate that the metabolic syndrome markedly attenuates coronary microvascular function via the diminished contribution of K+ channels to the overall control of coronary blood flow. Our data implicate impaired functional expression of coronary K+ channels as a critical mechanism underlying the increased incidence of cardiac arrhythmias, infarction and sudden cardiac death in obese patients with the metabolic syndrome.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adenosine is widely thought to elicit coronary vasodilation and attenuate smooth muscle cell (SMC) proliferation, thereby providing cardioprotection. We cloned the porcine adenosine A1 receptor (A1R) subtype and found that it paradoxically stimulated proliferation of cultured coronary SMC by the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) signaling pathways, thus suggesting A1R dysregulation could play a role in coronary artery disease (CAD), restenosis, and regulation of coronary blood flow (CBF). We utilized the Ossabaw swine model of metabolic syndrome (MetS) to test the hypothesis that A1R activation contributes to development of CAD, in-stent stenosis, and CBF regulation. Swine were fed standard chow (Lean) or excess calorie atherogenic diet for over 20 weeks, which elicited MetS characteristics and coronary atherosclerosis compared to Lean. We observed increased A1R in native CAD in MetS, which was reversed by exercise training, and upregulation of A1R expression and A1R-ERK1/2 activation in an in vitro organ culture model of CAD. Intracoronary stent deployment followed by different durations of recovery showed A1R upregulation occurred before maximal in-stent stenosis in vi vivo. More importantly, selective A1R antagonism with 8-cyclopentyl-1, 3-dipropylxanthine (DPCPX)-eluting stents decreased coronary ERK1/2 activation and reduced in-stent stenosis comparable to Taxus® (paclitaxel-eluting stents). A1R antagonism potentiated vasodilatory effects of some vasodilators other than adenosine in porcine coronary microcirculation under basal conditions. Short-term exercise training around stenting prevented stent-induced microvascular dysfunction and attenuated native atheroma in the genetically lean Yucatan swine. Conclusions: A1R upregulation and activation contributes to coronary in-stent stenosis in vivo in MetS, plays a role in the development of coronary atherosclerosis in vitro, and might involve in CBF dysregulation in dyslipidemia and stenting. Exercise training decreased A1R expression in atherosclerosis, reduced native atheroma, and prevented stent-induced microvascular dysfunction. Selective pharmacological antagonism of A1R holds promise for treatment of CAD. Indiana University-Purdue University Indianapolis (IUPUI)
Show more


12 Reads
Available from