Article

The Wnt/beta-Catenin Asymmetry Pathway Patterns the Atonal Ortholog lin-32 to Diversify Cell Fate in a Caenorhabditis elegans Sensory Lineage

Center for Neural Development and Disease, Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 09/2011; 31(37):13281-91. DOI: 10.1523/JNEUROSCI.6504-10.2011
Source: PubMed

ABSTRACT Each sensory ray of the Caenorhabditis elegans male tail comprises three distinct neuroglial cell types. These three cells descend from a single progenitor, the ray precursor cell, through several rounds of asymmetric division called the ray sublineage. Ray development requires the conserved atonal-family bHLH gene lin-32, which specifies the ray neuroblast and promotes the differentiation of its progeny. However, the mechanisms that allocate specific cell fates among these progeny are unknown. Here we show that the distribution of LIN-32 during the ray sublineage is markedly asymmetric, localizing to anterior daughter cells in two successive cell divisions. The anterior-posterior patterning of LIN-32 expression and of differentiated ray neuroglial fates is brought about by the Wnt/β-catenin asymmetry pathway, including the Wnt ligand LIN-44, its receptor LIN-17, and downstream components LIT-1 (NLK), SYS-1 (β-catenin), and POP-1 (TCF). LIN-32 asymmetry itself has an important role in patterning ray cell fates, because the failure to silence lin-32 expression in posterior cells disrupts development of this branch of the ray sublineage. Together, our results illustrate a mechanism whereby the regulated function of a proneural-class gene in a single neural lineage can both specify a neural precursor and actively pattern the fates of its progeny. Moreover, they reveal a central role for the Wnt/β-catenin asymmetry pathway in patterning neural and glial fates in a simple sensory lineage.

0 Followers
 · 
119 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Although left-right asymmetries are common features of nervous systems, their developmental bases are largely unknown. In the zebrafish epithalamus, dorsal habenular neurons adopt medial (dHbm) and lateral (dHbl) subnuclear character at very different frequencies on the left and right sides. The left-sided parapineal promotes the elaboration of dHbl character in the left habenula, albeit by an unknown mechanism. Likewise, the genetic pathways acting within habenular neurons to control their asymmetric differentiated character are unknown. Results In a forward genetic screen for mutations that result in loss of habenular asymmetry, we identified two mutant alleles of tcf7l2, a gene that encodes a transcriptional regulator of Wnt signaling. In tcf7l2 mutants, most neurons on both sides differentiate with dHbl identity. Consequently, the habenulae develop symmetrically, with both sides adopting a pronounced leftward character. Tcf7l2 acts cell automously in nascent equipotential neurons, and on the right side, it promotes dHbm and suppresses dHbl differentiation. On the left, the parapineal prevents this Tcf7l2-dependent process, thereby promoting dHbl differentiation. Conclusions Tcf7l2 is essential for lateralized fate selection by habenular neurons that can differentiate along two alternative pathways, thereby leading to major neural circuit asymmetries.
    Current Biology 09/2014; 24(19). DOI:10.1016/j.cub.2014.08.006 · 9.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The vulva search corresponds to the first step of mating in C. elegans wherein the male recognizes a potential mate through contact and commences a systematic, contact-based search of her surface for the vulva. During this 'dance' the male presses his tail genitalia firmly against the hermaphrodite surface and moves backward, modulating tail posture to effect changes in search trajectory. Upon sensing the vulva, the male pauses and the insemination phase of mating begins. External tail sensilla, the rays, induce and guide the male's search by registering hermaphrodite surface cues. C. elegans male mating behavior, like many other animate interactions (such as predator-prey interactions or intrasexual aggression), is performed at close quarters and requires that participants constantly adjust their movement with respect to one another on a moment-by-moment basis. The design features of the supporting circuitry explain simultaneously the robustness, speed and acuity of the male's behavior and its male-specific nature. Processing at all levels of the circuitry appears to be distributed. Cellular components exhibit both partial redundancy (thus conferring robustness in output) and subtle functional differences (predicted to confer acuity). Surprisingly, gender-shared cell types feature prominently in the circuitry. Male-specific components form sensory pathways that render downstream gender-shared circuits responsive to mate cues, while other male cells act to augment gender-shared cell activity. Overall, the attributes of the vulva search circuitry provide insight into principles guiding the design and operation of circuits supporting dynamic social behaviors expressed by more complex and less tractable animal species.
    Seminars in Cell and Developmental Biology 05/2014; 33. DOI:10.1016/j.semcdb.2014.05.009 · 5.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: eLife digest The nematode worm, C. elegans, is roughly 1 mm long, made up of around 1000 cells and has two sexes: male and hermaphrodite. Hermaphrodite worms produce both eggs and sperm and can self-fertilize to generate around 300 offspring each time. Fertilization by a male, on the other hand, results in three times as many progeny and introduces genetic diversity into the population. However, it also reduces the lifespan of the hermaphrodite. Mating also incurs a cost for males: it requires a lot of energy, which prevents male works from engaging in other activities, such as feeding, and it also increases their risk of predation. In many species, including C. elegans, the frequency with which a male can mate is limited by a period of reduced mating drive and ability that follows each instance of successful mating. However, the molecular and cellular basis of this ‘refractory period’ remains largely unclear. Using a range of techniques, LeBoeuf et al. have now identified the circuits that regulate male mating behavior in C. elegans. When male worms were introduced into a Petri dish containing 15 hermaphrodites, most males initiated mating within about 2 min. The length of the refractory period varied between worms, but averaged roughly 12 min. This consisted of a period of disinterest, in which males did not approach hermaphrodites, followed by a period in which males attempted mating but were slower and less efficient, suggesting that the neural circuits controlling mating behaviors had yet to recover completely. Males with longer refractory periods produced more progeny in their second mating than those with shorter refractory periods, suggesting that the interval also enables males to replenish their sperm levels. Further experiments revealed that a chemical transmitter called dopamine promotes ejaculation and then immediately reduces the worm's activity levels, giving rise to the refractory period. By enforcing a delay between matings, the refractory period may also increase the likelihood that successive matings will be with different hermaphrodites, helping to maximize the number and diversity of offspring. Some aspects of the neural circuitry that controls the refractory period in C. elegans resemble those seen in mammals, suggesting that insights gained from an animal with 1000 cells could also be relevant to more complex species. DOI: http://dx.doi.org/10.7554/eLife.02938.002
    eLife Sciences 06/2014; 3:e02938. DOI:10.7554/eLife.02938 · 8.52 Impact Factor