MYH9 and APOL1 are both associated with sickle cell disease nephropathy

Center for Human Genetics, Duke University Medical Center, Durham, NC 27710, USA. allison.ashleykoch@
British Journal of Haematology (Impact Factor: 4.71). 09/2011; 155(3):386-94. DOI: 10.1111/j.1365-2141.2011.08832.x
Source: PubMed


Renal failure occurs in 5-18% of sickle cell disease (SCD) patients and is associated with early mortality. At-risk SCD patients cannot be identified prior to the appearance of proteinuria and the pathobiology is not well understood. The myosin, heavy chain 9, non-muscle (MYH9) and apolipoprotein L1 (APOL1) genes have been associated with risk for focal segmental glomerulosclerosis and end-stage renal disease in African Americans. We genotyped 26 single nucleotide polymorphisms (SNPs) in MYH9 and 2 SNPs in APOL1 (representing the G1 and G2 tags) in 521 unrelated adult (18-83 years) SCD patients screened for proteinuria. Using logistic regression, SNPs were evaluated for association with proteinuria. Seven SNPs in MYH9 and one in APOL1 remained significantly associated with proteinuria after multiple testing correction (P < 0·0025). An MYH9 risk haplotype (P = 0·001) and the APOL1 G1/G2 recessive model (P < 0·0001) were strongly associated with proteinuria, even when accounting for the other. Glomerular filtration rate was negatively correlated with proteinuria (P < 0·0001), and was significantly predicted by an interaction between MYH9 and APOL1 in age-adjusted analyses. Our data provide insight into the pathobiology of renal dysfunction in SCD, suggesting that MYH9 and APOL1 are both associated with risk.

1 Follower
21 Reads
  • Source
    • "Previous investigators have raised the possibility that the predisposition to glomerulosclerosis among African-Americans related to the Chr22 locus has not been fully explained [11], [30], [39]. Based on our findings we propose that African-American glomerulosclerosis results, not from the G1 and G2 variants themselves, but from “genetic hitchhiking” of deleterious mutations along with the G1 and G2 alleles. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Among African-Americans, genome wide association revealed a strong correlation between the G1 and G2 alleles of APOL1 (apolipoproteinL1, also called trypanolytic factor) and kidney diseases including focal and segmental glomerulosclerosis, HIV-associated nephropathy and hypertensive nephrosclerosis. In the prevailing hypothesis, heterozygous APOL1 G1 and G2 alleles increase resistance against Trypanosoma that cause African sleeping sickness, resulting in positive selection of these alleles, but when homozygous the G1 and G2 alleles predispose to glomerulosclerosis. While efforts are underway to screen patients for G1 and G2 alleles and to better understand "APOL1 glomerulopathy," no data prove that these APOL1 sequence variants cause glomerulosclerosis. G1 and G2 correlate best with glomerulosclerosis as recessive alleles, which suggests a loss of function mutation for which proof of causality is commonly tested with homozygous null alleles. This test cannot be performed in rodents as the APOL gene cluster evolved only in primates. However, there is a homozygous APOL1 null human being who lives in a village in rural India. This individual and his family offer a unique opportunity to test causality between APOL1 null alleles and glomerulosclerosis. Methods and findings: We obtained clinical data, blood and urine from this APOL1 null patient and 50 related villagers. Based on measurements of blood pressure, BUN, creatinine, albuminuria, genotyping and immunoblotting, this APOL1 null individual does not have glomerulosclerosis, nor do his relatives who carry APOL1 null alleles. Conclusions: This small study cannot provide definitive conclusions but the absence of glomerulosclerosis in this unique population is consistent with the possibility that African-American glomerulosclerosis is caused, not by loss of APOL1 function, but by other mechanisms including a subtle gain of function or by the "genetic hitchhiking" of deleterious mutations in a gene linked to APOL1 G1 and G2.
    PLoS ONE 12/2012; 7(12):e51546. DOI:10.1371/journal.pone.0051546 · 3.23 Impact Factor
  • Source

    Nephrology Dialysis Transplantation 02/2012; 27(4):1288-91. DOI:10.1093/ndt/gfr812 · 3.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite intensive antihypertensive therapy there was a high incidence of renal end points in participants of the African American Study of Kidney Disease and Hypertension (AASK) cohort. To better understand this, coding variants in the apolipoprotein L1 (APOL1) and the nonmuscle myosin heavy chain 9 (MYH9) genes were evaluated for an association with hypertension-attributed nephropathy and clinical outcomes in a case-control study. Clinical data and DNA were available for 675 AASK participant cases and 618 African American non-nephropathy control individuals. APOL1 G1 and G2, and MYH9 E1 variants along with 44 ancestry informative markers, were genotyped with allele frequency differences between cases and controls analyzed by logistic regression multivariable models adjusting for ancestry, age, and gender. In recessive models, APOL1 risk variants were significantly associated with kidney disease in all cases compared to controls with an odds ratio of 2.57. In AASK cases with more advanced disease, such as a baseline urine protein to creatinine ratio over 0.6 g/g or a serum creatinine over 3 mg/dl during follow-up, the association was strengthened with odds ratios of 6.29 and 4.61, respectively. APOL1 risk variants were consistently associated with renal disease progression across medication classes and blood pressure targets. Thus, kidney disease in AASK participants was strongly associated with APOL1 renal risk variants.Kidney International advance online publication, 25 July 2012; doi:10.1038/ki.2012.263.
    Kidney International 07/2012; 83(1). DOI:10.1038/ki.2012.263 · 8.56 Impact Factor
Show more