Pancreatic Mesenchyme Regulates Epithelial Organogenesis throughout Development

Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America.
PLoS Biology (Impact Factor: 11.77). 09/2011; 9(9):e1001143. DOI: 10.1371/journal.pbio.1001143
Source: PubMed

ABSTRACT The developing pancreatic epithelium gives rise to all endocrine and exocrine cells of the mature organ. During organogenesis, the epithelial cells receive essential signals from the overlying mesenchyme. Previous studies, focusing on ex vivo tissue explants or complete knockout mice, have identified an important role for the mesenchyme in regulating the expansion of progenitor cells in the early pancreas epithelium. However, due to the lack of genetic tools directing expression specifically to the mesenchyme, the potential roles of this supporting tissue in vivo, especially in guiding later stages of pancreas organogenesis, have not been elucidated. We employed transgenic tools and fetal surgical techniques to ablate mesenchyme via Cre-mediated mesenchymal expression of Diphtheria Toxin (DT) at the onset of pancreas formation, and at later developmental stages via in utero injection of DT into transgenic mice expressing the Diphtheria Toxin receptor (DTR) in this tissue. Our results demonstrate that mesenchymal cells regulate pancreatic growth and branching at both early and late developmental stages by supporting proliferation of precursors and differentiated cells, respectively. Interestingly, while cell differentiation was not affected, the expansion of both the endocrine and exocrine compartments was equally impaired. To further elucidate signals required for mesenchymal cell function, we eliminated β-catenin signaling and determined that it is a critical pathway in regulating mesenchyme survival and growth. Our study presents the first in vivo evidence that the embryonic mesenchyme provides critical signals to the epithelium throughout pancreas organogenesis. The findings are novel and relevant as they indicate a critical role for the mesenchyme during late expansion of endocrine and exocrine compartments. In addition, our results provide a molecular mechanism for mesenchymal expansion and survival by identifying β-catenin signaling as an essential mediator of this process. These results have implications for developing strategies to expand pancreas progenitors and β-cells for clinical transplantation.

  • Pancreatology 03/2014; 14(2):e4-e5. DOI:10.1016/j.pan.2014.03.016 · 2.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Wnt signaling is a well conserved pathway critical for growth, patterning and differentiation of multiple tissues and organs. Previous studies on Wnt signaling in the pancreas have been based predominantly on downstream pathway effector genes such as β-catenin. We here provide evidence that the canonical-pathway member Wnt7b is a physiological regulator of pancreatic progenitor cell growth. Genetic deletion of Wnt7b in the developing pancreas leads to pancreatic hypoplasia due to reduced proliferation of pancreatic progenitor cells during the phase of pancreas development marked by rapid progenitor cell growth. While the differentiation potential of pancreatic progenitor cells is unaffected by Wnt7b deletion, through a gain-of-function analysis, we find that early pancreatic progenitor cells are highly sensitive to Wnt7b expression, but later lose such competence. By modulating the level and the temporal windows of Wnt7b expression we demonstrate a significant impact on organ growth and morphogenesis particularly during the early branching stages of the organ, which negatively affects generation of the pro-endocrine (Ngn3+/Nkx6.1+), and pro-acinar (Ptf1A+) fields. Consequently, Wnt7b gain-of-function results in failed morphogenesis and almost complete abrogation of the differentiation of endocrine and acinar cells, leading to cystic epithelial metaplasia expressing ductal markers including Sox9, Hnf6 and Hnf1β. While Wnt7b is expressed exclusively in the developing pancreatic epithelium, adjacent mesenchymal cells in the organ display a direct trophic response to elevated Wnt7b and increase expression of Lef1, cFos and desmin. Of note, in contrast to the pancreatic epithelium, the pancreatic mesenchyme remains competent to respond to Wnt7b ligand, at later stages in development. We conclude that Wnt7b helps coordinate pancreatic development through autocrine, as well as paracrine mechanisms, and as such represents a novel bi-modal morphogen ligand.
    Developmental Biology 01/2015; 399(2). DOI:10.1016/j.ydbio.2014.12.031 · 3.64 Impact Factor
  • Pancreatology 03/2014; 14(2):e5. DOI:10.1016/j.pan.2014.03.017 · 2.50 Impact Factor

Full-text (2 Sources)

Available from
Jun 4, 2014