Discovery and structural characterization of a small molecule 14-3-3 protein-protein interaction inhibitor.

Department of Pharmacology, Emory UniversitySchool of Medicine, Atlanta, GA 30322, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 09/2011; 108(39):16212-6. DOI: 10.1073/pnas.1100012108
Source: PubMed

ABSTRACT The 14-3-3 family of phosphoserine/threonine-recognition proteins engage multiple nodes in signaling networks that control diverse physiological and pathophysiological functions and have emerged as promising therapeutic targets for such diseases as cancer and neurodegenerative disorders. Thus, small molecule modulators of 14-3-3 are much needed agents for chemical biology investigations and therapeutic development. To analyze 14-3-3 function and modulate its activity, we conducted a chemical screen and identified 4-[(2Z)-2-[4-formyl-6-methyl-5-oxo-3-(phosphonatooxymethyl)pyridin-2-ylidene]hydrazinyl]benzoate as a 14-3-3 inhibitor, which we termed FOBISIN (FOurteen-three-three BInding Small molecule INhibitor) 101. FOBISIN101 effectively blocked the binding of 14-3-3 with Raf-1 and proline-rich AKT substrate, 40 kD(a) and neutralized the ability of 14-3-3 to activate exoenzyme S ADP-ribosyltransferase. To provide a mechanistic basis for 14-3-3 inhibition, the crystal structure of 14-3-3ζ in complex with FOBISIN101 was solved. Unexpectedly, the double bond linking the pyridoxal-phosphate and benzoate moieties was reduced by X-rays to create a covalent linkage of the pyridoxal-phosphate moiety to lysine 120 in the binding groove of 14-3-3, leading to persistent 14-3-3 inactivation. We suggest that FOBISIN101-like molecules could be developed as an entirely unique class of 14-3-3 inhibitors, which may serve as radiation-triggered therapeutic agents for the treatment of 14-3-3-mediated diseases, such as cancer.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein-protein interaction was investigated using a protein nanoprobe capable of photo-initiated cross-linking in combination with high-resolution and tandem mass spectrometry. This emerging experimental approach introduces photo-analogs of amino acids within a protein sequence during its recombinant expression, preserves native protein structure and is suitable for mapping the contact between two proteins. The contact surface regions involved in the well-characterized interaction between two molecules of human 14-3-3ζ regulatory protein were used as a model. The employed photo-initiated cross-linking techniques extend the number of residues shown to be within interaction distance in the contact surface of the 14-3-3ζ dimer (Gln8-Met78). The results of this study are in agreement with our previously published data from molecular dynamic calculations based on high-resolution chemical cross-linking data and Hydrogen/Deuterium exchange mass spectrometry. The observed contact is also in accord with the 14-3-3ζ X-ray crystal structure (PDB 3dhr). The results of the present work are relevant to the structural biology of transient interaction in the 14-3-3ζ protein, and demonstrate the ability of the chosen methodology (the combination of photo-initiated cross-linking protein nanoprobes and mass spectrometry analysis) to map the protein-protein interface or regions with a flexible structure.
    International Journal of Molecular Sciences 06/2014; 15(6):9224-41. · 2.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: One of the proteins that is found in a diverse range of eukaryotic protein-protein interactions is the adaptor protein 14-3-3. As 14-3-3 is a hub protein with very diverse interactions, it is a good model to study various protein-protein interactions. A wide range of classes of molecules, peptides, small molecules or natural products, has been used to modify the protein interactions, providing both stabilization or inhibition of the interactions of 14-3-3 with its binding partners. The first protein crystal structures were solved in 1995 and gave molecular insights for further research. The plant analog of 14-3-3 binds to a plant plasma membrane H(+)-ATPase and this protein complex is stabilized by the fungal phytotoxin fusicoccin A. The knowledge gained from the process in plants was transferred to and applied in human models to find stabilizers or inhibitors of 14-3-3 interaction in human cellular pathways.
    Future medicinal chemistry 05/2014; 6(8):903-21. · 4.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The 14-3-3ζ protein has been identified as a putative oncoprotein in several cancers, including non–small cell lung cancer (NSCLC). However, the mechanisms underlying its functions have not been well defined. Proteins that interact with 14-3-3ζ were identified through coimmunoprecipitation and mass spectrometry in NSCLC cells. The interaction of 14-3-3ζ with these molecular partners and their roles in the invasiveness and metastasis of NSCLC cells were assayed through specific disruptions in the 14-3-3ζ signaling network. In addition, the clinical implications of this 14-3-3ζ complex were examined in samples from patients with NSCLC. Among the identified proteins that interacted with 14-3-3ζ, there were 230 proteins in 95-D cells, 181 proteins in 95-C cells, and 203 proteins in A549 cells; and 16 interacting proteins were identified that overlapped between all cell lines. Further studies revealed 14-3-3ζ complexes within the heat shock protein 27 (Hsp27) protein and demonstrated that the interference of Hsp27 or 14-3-3ζ inhibited the invasion and metastasis of NSCLC cells. The invasive and metastatic capabilities of cells with both Hsp27 and 14-3-3ζ interference could be completely restored only by Hsp27 and 14-3-3ζ complementary DNA transfection and not by either agent alone. Clinically, the postoperative 5-year overall survival (OS) in patients who had high expression of both 14-3-3ζ and Hsp27 was significantly lower than the 5-year OS in patients who had low expression of both 14-3-3ζ and Hsp27 (26.5% vs 59.7%, respectively). Multivariate analysis revealed that the combined expression of 14-3-3ζ and Hsp27 was an independent prognostic indicator of OS(P = .036). The current data suggest that the combined expression of 14-3-3ζ and Hsp27 may be a biomarker for predicting survival in patients with NSCLC, and this combination may have potential as a therapeutic target for NSCLC.
    Cancer 03/2014; 120(5):652-63. · 5.20 Impact Factor


Available from
May 20, 2014