Discovery and structural characterization of a small molecule 14-3-3 protein-protein interaction inhibitor

Department of Pharmacology, Emory UniversitySchool of Medicine, Atlanta, GA 30322, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.67). 09/2011; 108(39):16212-6. DOI: 10.1073/pnas.1100012108
Source: PubMed


The 14-3-3 family of phosphoserine/threonine-recognition proteins engage multiple nodes in signaling networks that control diverse physiological and pathophysiological functions and have emerged as promising therapeutic targets for such diseases as cancer and neurodegenerative disorders. Thus, small molecule modulators of 14-3-3 are much needed agents for chemical biology investigations and therapeutic development. To analyze 14-3-3 function and modulate its activity, we conducted a chemical screen and identified 4-[(2Z)-2-[4-formyl-6-methyl-5-oxo-3-(phosphonatooxymethyl)pyridin-2-ylidene]hydrazinyl]benzoate as a 14-3-3 inhibitor, which we termed FOBISIN (FOurteen-three-three BInding Small molecule INhibitor) 101. FOBISIN101 effectively blocked the binding of 14-3-3 with Raf-1 and proline-rich AKT substrate, 40 kD(a) and neutralized the ability of 14-3-3 to activate exoenzyme S ADP-ribosyltransferase. To provide a mechanistic basis for 14-3-3 inhibition, the crystal structure of 14-3-3ζ in complex with FOBISIN101 was solved. Unexpectedly, the double bond linking the pyridoxal-phosphate and benzoate moieties was reduced by X-rays to create a covalent linkage of the pyridoxal-phosphate moiety to lysine 120 in the binding groove of 14-3-3, leading to persistent 14-3-3 inactivation. We suggest that FOBISIN101-like molecules could be developed as an entirely unique class of 14-3-3 inhibitors, which may serve as radiation-triggered therapeutic agents for the treatment of 14-3-3-mediated diseases, such as cancer.

Download full-text


Available from: Fadlo R Khuri, Oct 11, 2015
1 Follower
68 Reads
  • Source
    • "Overall, our findings provide evidence that 14-3-3 adaptor proteins nucleate the assembly of the AID-centered CSR machinery on 5′-AGCT-3′ DNA repeats and H3K9acS10ph marks in S regions that are set to undergo S–S recombination (Figure 11). They also suggest that CSR DNA–protein and/or protein–protein complexes can be destabilized by naturally occurring molecules, leading to inhibition of CSR, thereby providing a basis for the identification of synthetic small molecule compounds, such as those that disrupt DNA–protein and/or protein–protein interactions involving 14-3-3 [26], [73], or biologics that can effectively inhibit unwanted CSR, such as CSR underlying the generation of IgG and IgA autoantibodies in autoimmunity and atopic IgE antibodies in allergies and asthma. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Class switch DNA recombination (CSR) of the immunoglobulin heavy chain (IgH) locus crucially diversifies antibody biological effector functions. CSR involves the induction of activation-induced cytidine deaminase (AID) expression and AID targeting to switch (S) regions by 14-3-3 adaptors. 14-3-3 adaptors specifically bind to 5'-AGCT-3' repeats, which make up for the core of all IgH locus S regions. They selectively target the upstream and downstream S regions that are set to undergo S-S DNA recombination. We hypothesized that 14-3-3 adaptors function as scaffolds to stabilize CSR enzymatic elements on S regions. Here we demonstrate that all seven 14-3-3β, 14-3-3ε, 14-3-3γ, 14-3-3η, 14-3-3σ, 14-3-3τ and 14-3-3ζ adaptors directly interacted with AID, PKA-Cα (catalytic subunit) and PKA-RIα (regulatory inhibitory subunit) and uracil DNA glycosylase (Ung). 14-3-3 adaptors, however, did not interact with AID C-terminal truncation mutant AIDΔ(180-198) or AIDF193A and AIDL196A point-mutants (which have been shown not to bind to S region DNA and fail to mediate CSR). 14-3-3 adaptors colocalized with AID and replication protein A (RPA) in B cells undergoing CSR. 14-3-3 and AID binding to S region DNA was disrupted by viral protein R (Vpr), an accessory protein of human immunodeficiency virus type-1 (HIV-1), which inhibited CSR without altering AID expression or germline IH-CH transcription. Accordingly, we demonstrated that 14-3-3 directly interact with Vpr, which in turn, also interact with AID, PKA-Cα and Ung. Altogether, our findings suggest that 14-3-3 adaptors play important scaffold functions and nucleate the assembly of multiple CSR factors on S regions. They also show that such assembly can be disrupted by a viral protein, thereby allowing us to hypothesize that small molecule compounds that specifically block 14-3-3 interactions with AID, PKA and/or Ung can be used to inhibit unwanted CSR.
    PLoS ONE 11/2013; 8(11):e80414. DOI:10.1371/journal.pone.0080414 · 3.23 Impact Factor
  • Source
    • "In contrast, down-regulation of 14-3-3 expression sensitizes cancer cells to chemotherapeutic drugs [2], [20], including prostate cancer [21], implicating the therapeutic potential of 14-3-3ζ for cancer therapy. Recent advances in SiRNA based knockdown of 14-3-3 proteins as well as peptide inhibitors preventing dimerization of 14-3-3 such as R18 (difopein, a dimer of R18) [34] or small molecule compounds such as FOBISIN 101 [35] shows the promise of developing anti-14-3-3 therapy for cancer. "
    [Show abstract] [Hide abstract]
    ABSTRACT: 14-3-3 proteins are ubiquitously expressed dimeric adaptor proteins that have emerged as key mediators of many cell signaling pathways in multiple cell types. Its effects are mainly mediated by binding to selective phosphoserine/threonine proteins. The importance of 14-3-3 proteins in cancer have only started to become apparent and its exact role in cancer progression as well as the mechanisms by which 14-3-3 proteins mediate cancer cell function remain unknown. While protein 14-3-3σ is widely accepted as a tumor suppressor, 14-3-3ζ, β and γ isoforms have been shown to have tumor promoting effects. Despite the importance of 14-3-3 family in mediating various cell processes, the exact role and mechanism of 14-3-3ζ remain unexplored. In the current study, we investigated the role of protein 14-3-3ζ in prostate cancer cell motility and transendothelial migration using biochemical, molecular biology and electric cell-substrate impedance sensing approaches as well as cell based functional assays. Our study indicated that expression with wild-type protein 14-3-3ζ significantly enhanced Rac activity in PC3 cells. In contrast, expression of dimer-resistant mutant of protein 14-3-3ζ (DM-14-3-3) inhibited Rac activity and associated phosphorylation of p21 activated kinase-1 and 2. Expression with wild-type 14-3-3ζ or constitutively active Rac1 enhanced extracellular matrix recognition, lamellipodia formation, cell migration and trans-endothelial migration by PC3 cells. In contrast, expression with DM 14-3-3ζ or DN-Rac1 in PC3 cells significantly inhibited these cell functions. Our results demonstrate for the first time that 14-3-3ζ enhances prostate cancer cell-matrix interactions, motility and transendothelial migration in vitro via activation of Rac1-GTPase and is an important target for therapeutic interventions for prostate cancer.
    PLoS ONE 07/2012; 7(7):e40594. DOI:10.1371/journal.pone.0040594 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The 14-3-3 family of phosphoserine/phosphothreonine-binding proteins dynamically regulates the activity of client proteins in various signaling pathways that control diverse physiological and pathological processes. In response to environmental cues, 14-3-3 proteins orchestrate the highly regulated flow of signals through complex networks of molecular interactions to achieve well-controlled physiological outputs, such as cell proliferation or differentiation. Accumulating evidence now supports the concept that either an abnormal state of 14-3-3 protein expression, or dysregulation of 14-3-3/client protein interactions, contributes to the development of a large number of human diseases. In particular, clinical investigations in the field of oncology have demonstrated a correlation between upregulated 14-3-3 levels and poor survival of cancer patients. These studies highlight the rapid emergence of 14-3-3 proteins as a novel class of molecular target for potential therapeutic intervention. The current status of 14-3-3 modulator discovery is discussed.
    Seminars in Cell and Developmental Biology 09/2011; 22(7):705-12. DOI:10.1016/j.semcdb.2011.09.012 · 6.27 Impact Factor
Show more