Article

Thalassaemia.

Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK.
The Lancet (Impact Factor: 39.21). 09/2011; 379(9813):373-83. DOI: 10.1016/S0140-6736(11)60283-3
Source: PubMed

ABSTRACT Thalassaemia is one of the most common genetic diseases worldwide, with at least 60,000 severely affected individuals born every year. Individuals originating from tropical and subtropical regions are most at risk. Disorders of haemoglobin synthesis (thalassaemia) and structure (eg, sickle-cell disease) were among the first molecular diseases to be identified, and have been investigated and characterised in detail over the past 40 years. Nevertheless, treatment of thalassaemia is still largely dependent on supportive care with blood transfusion and iron chelation. Since 1978, scientists and clinicians in this specialty have met regularly in an international effort to improve the management of thalassaemia, with the aim of increasing the expression of unaffected fetal genes to improve the deficiency in adult β-globin synthesis. In this Seminar we discuss important advances in the understanding of the molecular and cellular basis of normal and abnormal expression of globin genes. We will summarise new approaches to the development of tailored pharmacological agents to alter regulation of globin genes, the first trial of gene therapy for thalassaemia, and future prospects of cell therapy.

1 Follower
 · 
84 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study aimed to validate pulse CO-oximetry-based haemoglobin (Hb) estimation in children and adults with thalassaemia major (TM) and to determine the impact of different baseline variables on the accuracy of the estimation.
    Sultan Qaboos University medical journal 11/2014; 14(4):e468-72.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fetal hemoglobin (HbF) induction can ameliorate the clinical severity of sickle cell disease and β-thalassemia. We previously reported that activation of the eukaryotic initiation factor 2α (eIF2α) stress pathway increased HbF through a post-transcriptional mechanism. In this study, we explored the underlying means by which salubrinal, an activator of eIF2α signaling, enhances HbF production in primary human erythroid cells. Initial experiments eliminated changes in globin mRNA stability or cellular location and reduction of adult hemoglobin (HbA) as possible salubrinal mechanisms. We then determined that salubrinal selectively increased the number of actively translating ribosomes on γ-globin mRNA. This enhanced translation efficiency occurred in the recovery phase of the stress response as phosphorylation of eIF2α and global protein synthesis returned toward baseline. These findings highlight γ-globin mRNA translation as a novel mechanism for regulating HbF production and as a pharmacologic target for induction of HbF.
    Blood 08/2014; 124(17). DOI:10.1182/blood-2014-03-564302 · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The β-thalassemias are a group of hereditary hematological diseases caused by over 300 mutations of the adult β-globin gene. Together with sickle cell anemia, thalassemia syndromes are among the most impactful diseases in developing countries, in which the lack of genetic counseling and prenatal diagnosis have contributed to the maintenance of a very high frequency of these genetic diseases in the population. Gene therapy for β-thalassemia has recently seen steadily accelerating progress and has reached a crossroads in its development. Presently, data from past and ongoing clinical trials guide the design of further clinical and preclinical studies based on gene augmentation, while fundamental insights into globin switching and new technology developments have inspired the investigation of novel gene-therapy approaches. Moreover, human erythropoietic stem cells from β-thalassemia patients have been the cellular targets of choice to date whereas future gene-therapy studies might increasingly draw on induced pluripotent stem cells. Herein, we summarize the most significant developments in β-thalassemia gene therapy over the last decade, with a strong emphasis on the most recent findings, for β-thalassemia model systems; for β-, γ-, and anti-sickling β-globin gene addition and combinatorial approaches including the latest results of clinical trials; and for novel approaches, such as transgene-mediated activation of γ-globin and genome editing using designer nucleases.
    Hematology Research and Reviews 02/2015; 6:69-85. DOI:10.2147/JBM.S46256