Article

Analysis of functional and pathway association of differential co-expressed genes: A case study in drug addiction

College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China.
Journal of Biomedical Informatics (Impact Factor: 2.48). 08/2011; 45(1):30-6. DOI: 10.1016/j.jbi.2011.08.014
Source: PubMed

ABSTRACT Drug addiction has been considered as a kind of chronic relapsing brain disease influenced by both genetic and environmental factors. At present, many causative genes and pathways related to diverse kinds of drug addiction have been discovered, while less attention has been paid to common mechanisms shared by different drugs underlying addiction. By applying a co-expression meta-analysis method to mRNA expression profiles of alcohol, cocaine, heroin addicted and normal samples, we identified significant gene co-expression pairs. As co-expression networks of drug group and control group constructed, associated function term pairs and pathway pairs reflected by co-expression pattern changes were discovered by integrating functional and pathway information respectively. The results indicated that respiratory electron transport chain, synaptic transmission, mitochondrial electron transport, signal transduction, locomotory behavior, response to amphetamine, negative regulation of cell migration, glucose regulation of insulin secretion, signaling by NGF, diabetes pathways, integration of energy metabolism, dopamine receptors may play an important role in drug addiction. In addition, the results can provide theory support for studies of addiction mechanisms.

0 Followers
 · 
83 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tumor necrosis factor (TNF) induces a caspase-independent but mitochondria-dependent cell death process in the mouse fibrosarcoma cell line L929. Mitochondria actively participate in this TNF-induced necrotic cell death by the generation of mitochondrial reactive oxygen species (ROS). The aim of this study was to identify the mitochondrial components involved in TNF-induced production of ROS and their regulation by bioenergetic pathways. Therefore, we analyzed the bioenergetic characteristics in two metabolic L929 variants that exhibit different sensitivities to TNF. L929gln cells use glutamine as respiratory substrate and are far more susceptible to TNF-induced ROS generation and cell death as L929glc cells that use glucose as respiratory substrate. We show that the higher levels of reducing NAD(P)H equivalents, detected in the desensitized L929glc cells, do not cause diminished ROS generation. To the contrary, TNF increases the levels of NAD(P)H, probably altering complex I activity. A multiparameter analysis of electron flux through the mitochondrial electron transport chain, TNF-induced ROS levels, and cell death convincingly demonstrates a dependence of TNF signaling on complex I activity. Also, the sensitizing effect of glutamine metabolism correlates with an enhanced contribution of complex I to the overall electron flux. This participation of complex I activity in TNF-induced cell death is regulated by substrate availability rather than by a direct modification of complex I proteins. From the results presented in this paper we conclude that TNF-induced ROS generation and cell death are strongly regulated by bioenergetic pathways that define electron flux through complex I of the electron transport chain.
    Antioxidants and Redox Signaling 02/1999; 1(3):285-95. DOI:10.1089/ars.1999.1.3-285 · 7.67 Impact Factor

Preview

Download
0 Downloads
Available from