Enhancement of differentiation efficiency of hESCs into vascular lineage cells in hypoxia via a paracrine mechanism

CHA Bio & Diostech Co., Ltd. 606-16 Yeoksam 1 dong, Gangnam gu, Seoul 135-907, Republic of Korea.
Stem Cell Research (Impact Factor: 4.47). 11/2011; 7(3):173-85. DOI: 10.1016/j.scr.2011.06.002
Source: PubMed

ABSTRACT Hypoxia is one way of inducing differentiation due to the activation of the key regulatory factor, Hypoxia-inducible factor 1 alpha (HIF-1α). However, the action of HIF-1α on the differentiation of hESCs was unclear until now. To investigate the effect of hypoxia on the differentiation of hESCs, we compared the differentiation efficacy into vascular lineage cells under normoxic and hypoxic conditions. We observed HIF-1α expression and the related expression of pro-angiogenic factors VEGF, bFGF, Ang-1 and PDGF in hEBs cultured under hypoxic conditions. Along with this, differentiation efficacy into vascular lineage cells was improved under hypoxic conditions. When HIF-1α was blocked by echinomycin, both angiogenic factors and the differentiation efficacy were down-regulated, suggesting that the enhancement of differentiation efficacy was caused by intrinsic up-regulation of HIF-1α and these pro-angiogenic factors under hypoxic condition. This response might be primarily regulated by the HIF-1α signal pathway, and hypoxia might be the key to improving the differentiation of hESCs into vascular lineage cells. Therefore, this study demonstrated that microenvironmental changes (i.e., hypoxia) can improve differentiation efficacy of hESCs into a vascular lineage without exogenous factors via cell-intrinsic up-regulation of angiogenic factors. These facts will contribute to the regulation of stem cell fate.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Whole-organ decellularization technology has emerged as a new alternative for the fabrication of bioartificial lungs. Embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) are potentially useful for recellularization since they can be directed to express phenotypic marker genes of lung epithelial cells. Normal pulmonary development takes place in a low oxygen environment ranging from 1 to 5%. By contrast, in vitro ESC and iPSC differentiation protocols are usually carried out at room-air oxygen tension. Here, we sought to determine the role played by oxygen tension on the derivation of Nkx2.1+ lung/thyroid progenitor cells from mouse ESC and iPSC. A step-wise differentiation protocol was used to generate Nkx2.1+ lung/thyroid progenitors under 20% and 5% oxygen tension. On day 12, gene expression analysis revealed that Nkx2.1 and Foxa2 (endodermal and early lung epithelial cell marker) were significantly upregulated at 5% oxygen tension in ESC and iPSC differentiated cultures compared to 20% oxygen conditions. In addition, quantification of Foxa2+Nkx2.1+Pax8- cells corresponding to the lung field, with exclusion of the potential thyroid fate identified by Pax8 expression, confirmed that the low physiologic oxygen tension exerted a significant positive effect on early pulmonary differentiation of ESC and iPSC. In conclusion, we found that 5% oxygen tension enhanced the derivation of lung progenitors from mouse ESC and iPSC compared to 20% room-air oxygen tension.
    07/2014; 2(7). DOI:10.14814/phy2.12075
  • [Show abstract] [Hide abstract]
    ABSTRACT: A critical regulator of the developing or regenerating vasculature is low oxygen tension. Precise elucidation of the role of low oxygen environments on endothelial commitment from human pluripotent stem cells necessitates controlled in vitro differentiation environments. We used a feeder-free, 2-dimensional differentiation system in which we could monitor accurately dissolved oxygen levels during human pluripotent stem cell differentiation toward early vascular cells (EVCs). We found that oxygen uptake rate of differentiating human pluripotent stem cells is lower in 5% O2 compared with atmospheric conditions. EVCs differentiated in 5% O2 had an increased vascular endothelial cadherin expression with clusters of vascular endothelial cadherin+ cells surrounded by platelet-derived growth factor β+ cells. When we assessed the temporal effects of low oxygen differentiation environments, we determined that low oxygen environments during the early stages of EVC differentiation enhance endothelial lineage commitment. EVCs differentiated in 5% O2 exhibited an increased expression of vascular endothelial cadherin and CD31 along with their localization to the membrane, enhanced lectin binding and acetylated low-density lipoprotein uptake, rapid cord-like structure formation, and increased expression of arterial endothelial cell markers. Inhibition of reactive oxygen species generation during the early stages of differentiation abrogated the endothelial inductive effects of the low oxygen environments. Low oxygen tension during early stages of EVC derivation induces endothelial commitment and maturation through the accumulation of reactive oxygen species, highlighting the importance of regulating oxygen tensions during human pluripotent stem cell-vascular differentiation.
    Arteriosclerosis Thrombosis and Vascular Biology 02/2014; 34(4). DOI:10.1161/ATVBAHA.114.303274 · 6.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Poor viability of transplanted bone marrow mesenchymal stem cells (BMSCs) is well‑known, but developing methods for enhancing the viability of BMSCs requires further investigation. The aim of the present study was to elucidate the effects of infrasound on the proliferation and apoptosis of BMSCs, and to determine the association between survivin expression levels and infrasound on BMSCs. Primary BMSCs were derived from Sprague Dawley rats. The BMSCs, used at passage three, were divided into groups that received infrasound for 10, 30, 60, 90 or 120 min, and control groups, which were exposed to the air for the same durations. Infrasound was found to promote proliferation and inhibit apoptosis in BMSCs. The results indicated that 60 min was the most suitable duration for applied infrasound treatment to BMSCs. The protein and mRNA expression levels of survivin in BMSCs from the two treatment groups that received 60 min infrasound or air, were examined by immunofluorescence and quantitative polymerase chain reaction. Significant differences in survivin expression levels were identified between the two groups, as infrasound enhanced the expression levels of survivin. In conclusion, infrasound promoted proliferation and inhibited apoptosis in BMSCs, and one mechanisms responsible for the protective effects may be the increased expression levels of survivin.
    Molecular Medicine Reports 08/2014; 10(5). DOI:10.3892/mmr.2014.2508 · 1.48 Impact Factor