Enhancement of differentiation efficiency of hESCs into vascular lineage cells in hypoxia via a paracrine mechanism.

CHA Bio & Diostech Co., Ltd. 606-16 Yeoksam 1 dong, Gangnam gu, Seoul 135-907, Republic of Korea.
Stem Cell Research (Impact Factor: 4.47). 11/2011; 7(3):173-85. DOI: 10.1016/j.scr.2011.06.002
Source: PubMed

ABSTRACT Hypoxia is one way of inducing differentiation due to the activation of the key regulatory factor, Hypoxia-inducible factor 1 alpha (HIF-1α). However, the action of HIF-1α on the differentiation of hESCs was unclear until now. To investigate the effect of hypoxia on the differentiation of hESCs, we compared the differentiation efficacy into vascular lineage cells under normoxic and hypoxic conditions. We observed HIF-1α expression and the related expression of pro-angiogenic factors VEGF, bFGF, Ang-1 and PDGF in hEBs cultured under hypoxic conditions. Along with this, differentiation efficacy into vascular lineage cells was improved under hypoxic conditions. When HIF-1α was blocked by echinomycin, both angiogenic factors and the differentiation efficacy were down-regulated, suggesting that the enhancement of differentiation efficacy was caused by intrinsic up-regulation of HIF-1α and these pro-angiogenic factors under hypoxic condition. This response might be primarily regulated by the HIF-1α signal pathway, and hypoxia might be the key to improving the differentiation of hESCs into vascular lineage cells. Therefore, this study demonstrated that microenvironmental changes (i.e., hypoxia) can improve differentiation efficacy of hESCs into a vascular lineage without exogenous factors via cell-intrinsic up-regulation of angiogenic factors. These facts will contribute to the regulation of stem cell fate.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Whole-organ decellularization technology has emerged as a new alternative for the fabrication of bioartificial lungs. Embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) are potentially useful for recellularization since they can be directed to express phenotypic marker genes of lung epithelial cells. Normal pulmonary development takes place in a low oxygen environment ranging from 1 to 5%. By contrast, in vitro ESC and iPSC differentiation protocols are usually carried out at room-air oxygen tension. Here, we sought to determine the role played by oxygen tension on the derivation of Nkx2.1+ lung/thyroid progenitor cells from mouse ESC and iPSC. A step-wise differentiation protocol was used to generate Nkx2.1+ lung/thyroid progenitors under 20% and 5% oxygen tension. On day 12, gene expression analysis revealed that Nkx2.1 and Foxa2 (endodermal and early lung epithelial cell marker) were significantly upregulated at 5% oxygen tension in ESC and iPSC differentiated cultures compared to 20% oxygen conditions. In addition, quantification of Foxa2+Nkx2.1+Pax8- cells corresponding to the lung field, with exclusion of the potential thyroid fate identified by Pax8 expression, confirmed that the low physiologic oxygen tension exerted a significant positive effect on early pulmonary differentiation of ESC and iPSC. In conclusion, we found that 5% oxygen tension enhanced the derivation of lung progenitors from mouse ESC and iPSC compared to 20% room-air oxygen tension.
    Physiological Reports. 07/2014; 2(7).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multipotent mesenchymal stem cells have recently emerged as an attractive cell type for the treatment of diabetes-associated wounds.The purpose of this study was to examine the potential biological function of human placenta-derived mesenchymal stem cells(PMSCs) in wound healing in diabetic Goto-Kakizaki(GK) rats. PMSCs were isolated from human placenta tissue and characterized by flow cytometry. A full-thickness circular excisional wound was created on the dorsum of each rat. Red fluorescent CM-DiI-labeled PMSCs were injected intradermally around the wound in the treatment group. After complete wound healing, full-thickness skin samples were taken from the wound sites for histological evaluation of the volume and density of vessels. Our data showed that the extent of wound closure was significantly enhanced in the PMSCs group compared with the no-graft controls. Microvessel density in wound bed biopsy sites was significantly higher in the PMSCs group compared with the no-graft controls. Most surprisingly, immunohistochemical studies confirmed that transplanted PMSCs localized to the wound tissue and were incorporated into recipient vasculature with improved angiogenesis. Notably, PMSCs secreted comparable amounts of proangiogenic molecules, such as VEGF, HGF, bFGF, TGF-β and IGF-1 at bioactive levels. This study demonstrated that PMSCs improved the wound healing rate in diabetic rats. It is speculated that this effect can be attributed to the PMSCs engraftment resulting in vascular regeneration via direct de novo differentiation and paracrine mechanisms. Thus, placenta-derived mesenchymal stem cells are implicated as a potential angiogenesis cell therapy for repair-resistant chronic wounds in diabetic patients.
    Biochemical and Biophysical Research Communications 07/2013; · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Topoisomerase I inhibitors are a class of anti-cancer drugs with a broad spectrum of clinical activity. However, they have limited efficacy in hepatocellular cancer. Here, we present in vitro and in vivo evidence that the extremely high level of hypoxia-inducible factor-1α (HIF-1α) in HCC is intimately correlated with resistance to topoisomerase I inhibitors. In a previous study conducted by our group, we found that TPZ could downregulate HIF-1α expression by decreasing HIF-1α protein synthesis. Therefore, we hypothesized that combining TPZ with topoisomerase I inhibitors may overcome the chemoresistance. In this study, we investigated that in combination with TPZ, Topoisomerase I inhibitors exhibited synergistic cytotoxicity and induced significant apoptosis in several HCC cell lines. The enhanced apoptosis induced by TPZ plus SN-38 (the active metabolite of irinotecan) was accompanied by increased mitochondrial depolarization and caspase pathway activation. The combination treatment dramatically inhibited the accumulation of HIF-1α protein, decreased the HIF-1α transcriptional activation and impaired the phosphorylation of proteins involved in the homologous recombination repair pathway, ultimately resulting in the synergism of these two drugs. Moreover, the increased anticancer efficacy of TPZ combined with irinotecan was further validated in a human liver cancer Bel-7402 xenograft mouse model. Taken together, our data show for the first time that HIF-1α is strongly correlated with resistance to topoisomerase I inhibitors in HCC. These results suggest that HIF-1α is a promising target and provide a rationale for clinical trials investigating the efficacy of the combination of topoisomerase I inhibitors and TPZ in hepatocellular cancers.
    Molecular Cancer Therapeutics 12/2013; · 5.60 Impact Factor