Uricase-adsorbed carbon-felt reactor coupled with a peroxidase-modified carbon-felt-based H2O2 detector for highly sensitive amperometric flow determination of uric acid

School of Chemical Engineering, University of Science and Technology LiaoNing, 185 Qianshan Middle Road, High-tech Zone, Anshan, LiaoNing 114501, China.
Journal of pharmaceutical and biomedical analysis (Impact Factor: 2.83). 08/2011; 57:125-32. DOI: 10.1016/j.jpba.2011.08.021
Source: PubMed

ABSTRACT Uricase (urate oxidase, UOx) was adsorbed onto a porous carbon-felt (CF) surface and the resulting UOx-adsorbed CF (UOx-CF) was successfully used as a column-type enzyme reactor coupled with a peroxidase-adsorbed CF-based bioelectrocatalytic H(2)O(2) flow-detector to fabricate a flow-amperometric biosensor for uric acid. In this flow-biosensor system, H(2)O(2) produced in the UOx-CF reactor was cathodically detected by horseradish peroxidase (HRP) and a thionine (Th)-coadsorbed CF (HRP/Th-CF)-based bioelectrocatalytic flow-detector at -0.05V vs. Ag/AgCl. Various adsorption conditions of the UOx (i.e., pH of the adsorption solution, type and concentration of the buffer used as the adsorption solvent, UOx concentration and adsorption time) and the operational conditions of the UOx-CF and HRP/Th-CF-coupled flow-biosensor (i.e., carrier flow rate and carrier pH) were optimized to obtain highly sensitive, selective and stable peak current responses to uric acid. The analytical performance of the UOx-CF and HRP/Th-CF-coupled flow biosensor for uric acid was as follows: sensitivity, 0.25μA/uM; linear range, 0.3-20μM; lower detection limit, 0.18μM; and sample throughput, ca. 30-90 samples/h. The resulting amperometric flow-biosensor for uric acid allowed the determination of uric acid in highly diluted body fluids (human serum and urine), and the analytical results obtained by the present biosensor were in fairly good agreement with those obtained by conventional enzyme-based spectrophotometry.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: The development of a noninvasive test for uric acid has been the holy grail of uric acid detection research over the last decade. In the present work, a novel matrix comprising of a NiO thin film (a biocompatible material) loaded with Ni microdiscs was prepared on an ITO-coated glass substrate (Ni/NiO/ITO) with the help of RF sputtering for the reagentless detection of uric acid. The bioelectrode was fabricated by immobilizing uricase using a physical adsorption technique on the surface of the Ni/NiO/ITO electrode. The prepared matrix was found to be efficient in sensing biological processes occurring on the surface of the bioelectrode (Ur/Ni/NiO/ITO) in the presence of the analyte (uric acid) to obtain an electronic output. The biosensor exhibits a high sensitivity (431.09 μA mM(-1)), low Km value (0.15 mM), high apparent enzyme activity (5.07 × 10(-2) units per cm(2)), high shelf life (20 weeks) and good selectivity for the detection of uric acid over a wide concentration range (0.05 mM to 1 mM) without any external mediator in the PBS buffer. The obtained results are encouraging for the realization of a reagentless uric acid biosensor with efficient sensing response characteristics.
    The Analyst 07/2014; 139(18). DOI:10.1039/c4an01029a · 3.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: 2,6-dichlorophenol indophenol (DCIP) and horseradish peroxidase (HRP) were coadsorbed on a porous carbon felt (CF) from their mixed aqueous solution under ultrasound irradiation for 5 min. The resulting DCIP and HRP-coadsorbed CF (DCIP/HRP-CF) showed an excellent bioelectrocatalytic activity for the reduction of H2O2. The coadsorption of DCIP together with HRP was essential to obtain larger bioelectrocatalytic current to H2O2. The DCIP/HRP-CF was successfully used as a working electrode unit of a bioelectrocatalytic flow-through detector for highly sensitive and continuous amperometric determination of H2O2. Under the optimized operational conditions (i.e., applied potential, +0.2 V versus Ag/AgCl; carrier pH 5.0, and carrier flow rate, 1.9 mL/min), the cathodic peak current of H2O2 linearly increased over the concentration range from 0.1 to 30 mu M (the sensitivity, 0.88 mu A/mu M (slope of linear part); the limit of detection, 0.1 mu M (S/N = 3) current noise level, 30 nA) with a sample through-put of ca. 40-90 samples/h.
    Materials 01/2014; 7(2). DOI:10.3390/ma7021142 · 1.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An important consideration for the development of biosensors is the adsorption of the biorecognition element to the surface of a substrate. As the first step in the immobilization process, adsorption affects most immobilization routes and much attention is given into the research of this process to maximize the overall activity of the biosensor. The use of nanomaterials, specifically nanoparticles and nanostructured films, offers advantageous properties that can be fine-tuned to maximize interactions with specific proteins to maximize activity, minimize structural changes, and enhance the catalytic step. In the biosensor field, protein-nanomaterial interactions are an emerging trend that span across many disciplines. This review addresses recent publications about the proteins most frequently used, their most relevant characteristics, and the conditions required to adsorb them to nanomaterials. When relevant and available, subsequent analytical figures of merits are discussed for selected biosensors. The general trend amongst the research papers allows concluding that the use of nanomaterials has already provided significant improvements in the analytical performance of many biosensors and that this research field will continue to grow. Copyright © 2014 Elsevier B.V. All rights reserved.
    Analytica Chimica Acta 10/2014; 872. DOI:10.1016/j.aca.2014.10.031 · 4.52 Impact Factor