Activation of matrix metalloproteinases following anti-Aβ immunotherapy; implications for microhemorrhage occurrence

University of Kentucky Sanders-Brown Center on Aging, Department of Physiology, Lexington, KY 40536, USA.
Journal of Neuroinflammation (Impact Factor: 5.41). 09/2011; 8(1):115. DOI: 10.1186/1742-2094-8-115
Source: PubMed


Anti-Aβ immunotherapy is a promising approach to the prevention and treatment of Alzheimer's disease (AD) currently in clinical trials. There is extensive evidence, both in mice and humans that a significant adverse event is the occurrence of microhemorrhages. Also, vasogenic edema was reported in phase 2 of a passive immunization clinical trial. In order to overcome these vascular adverse effects it is critical that we understand the mechanism(s) by which they occur.
We have examined the matrix metalloproteinase (MMP) protein degradation system in two previously published anti-Aβ immunotherapy studies. The first was a passive immunization study in which we examined 22 month old APPSw mice that had received anti-Aβ antibodies for 1, 2 or 3 months. The second is an active vaccination study in which we examined 16 month old APPSw/NOS2-/- mice treated with Aβ vaccination for 4 months.
There is a significant activation of the MMP2 and MMP9 proteinase degradation systems by anti-Aβ immunotherapy, regardless of whether this is delivered through active vaccination or passive immunization. We have characterized this activation by gene expression, protein expression and zymography assessment of MMP activity.
Since the MMP2 and MMP9 systems are heavily implicated in the pathophysiology of intracerbral hemorrhage, these data may provide a potential mechanism of microhemorrhage due to immunotherapy. Increased activity of the MMP system, therefore, is likely to be a major factor in increased microhemorrhage occurrence.

43 Reads
  • Source
    • "It is well known that matrix metalloproteinase (MMP) activation, in particular MMP2 and MMP9, is a critical mediator of hemorrhagic transformation after aneurysm formation and stroke [24,25]. We have previously shown that MMPs are activated by anti-Aβ immunotherapy in studies involving microhemorrhage induction [26], and we have also shown this activation in WT HHcy mice [5]. Here we show that gene expression of MMP2 and MMP9 system components are increased, relative to WT controls, in both the WT and APP/PS1 mice with induced HHcy (Figure 7A). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction Vascular dementia is the second most common cause of dementia after Alzheimer’s disease (AD). In addition, it is estimated that almost half of all AD patients have significant cerebrovascular disease comorbid with their AD pathology. We hypothesized that cerebrovascular disease significantly impacts AD pathological progression. Methods We used a dietary model of cerebrovascular disease that relies on the induction of hyperhomocysteinemia (HHcy). HHcy is a significant clinical risk factor for stroke, cardiovascular disease and type 2 diabetes. In the present study, we induced HHcy in APP/PS1 transgenic mice. Results While total β-amyloid (Aβ) load is unchanged across groups, Congophilic amyloid deposition was decreased in the parenchyma and significantly increased in the vasculature as cerebral amyloid angiopathy (CAA; vascular amyloid deposition) in HHcy APP/PS1 mice. We also found that HHcy induced more microhemorrhages in the APP/PS1 mice than in the wild-type mice and that it switched the neuroinflammatory phenotype from an M2a biased state to an M1 biased state. Associated with these changes was an induction of the matrix metalloproteinase protein 2 (MMP2) and MMP9 systems. Interestingly, after 6 months of HHcy, the APP/PS1 mice were cognitively worse than wild-type HHcy mice or APP/PS1 mice, indicative of an additive effect of the cerebrovascular pathology and amyloid deposition. Conclusions These data show that cerebrovascular disease can significantly impact Aβ distribution in the brain, favoring vascular deposition. We predict that the presence of cerebrovascular disease with AD will have a significant impact on AD progression and the efficacy of therapeutics.
    Alzheimer's Research and Therapy 06/2014; 6(3):32. DOI:10.1186/alzrt262 · 3.98 Impact Factor
  • Source
    • "MMPs are secreted as zymogens, which require cleavage to create active forms of the enzyme. For instance, matrix metalloproteinase-2 (MMP-2) is derived from pro-MMP-2 by MT1-MMP cleavage and MMP-9 is derived from pro-MMP9 by MMP3 cleavage [6]. The activity of MMP is also down-regulated by endogenous inhibitors, namely tissue inhibitors of metalloproteinase [7]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Previous reports have indicated that matrix metallopeptidase-2 (MMP-2) regulates angiogenic processes, which are involved in choroidal neovascularization (CNV). However, the regulation of MMP-2 in CNV has not been well-characterized. To gain more information about the regulation of MMP-2 in CNV, we analyzed the circuitry associated with MMP-2 regulation in a CNV model and in cell cultures, focusing on NFκB and the microRNA-29 family (miR-29s). Methods: The CNV model was established by subjecting C57BL/6 mice to fundus photocoagulation with a krypton red laser. In choroidal-retinal pigment epithelial (RPE) tissues of the model, immunohistochemistry was used to evaluate the angiogenesis and MMP-2 expression; reverse-transcription quantitative PCR (RT-qPCR) was used to determine the levels of miR-29s; and western blot was used to analyze the protein levels of nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) inhibitor, IκBα, and its phosphorylated form, phospho-IκBα. At the cellular level, RT-qPCR was used to examine the levels of miR-29s following NFκB activation by tumor necrosis factor alpha (TNFα); and western blot and luciferase assay were used to determine the regulation of MMP-2 by miR-29s in a human RPE cell line (ARPE-19) and in an umbilical vein endothelial cell line (EA hy926). Results: MMP-2 staining was increased in the choroidal neovascular membrane of laser-treated retina. Also, the NFκB pathway was induced in choroid-RPE tissue, as evidenced by a lower protein level of IκBα and a higher level of phospho-IκBα in the tissue homogenates than in those from non-treated eyes. During the period when the NFκB pathway was induced, reduced miR-29s were detected in the choroidal-RPE tissue of the laser-treated eyes. In cultured ARPE-19 cells, TNFα decreased miR-29a, b, and c, and the effects were rescued by NFκB decoy. In ARPE-19 and EA hy926, miR-29s mimics reduced the contents of secreted MMP-2 in the culture media. We also documented that miR-29s reduced MMP-2 3'-UTR-mediated luciferase transcription. Conclusions: The results suggest that in CNV, NFκB activation inhibits miR-29s, which may contribute to angiogenesis by up-regulating the MMP-2 protein level in RPE cells. These observations may help in developing a strategy for resolving CNV by targeting miR-29s levels.
    Journal of Neuroinflammation 05/2014; 11(1):88. DOI:10.1186/1742-2094-11-88 · 5.41 Impact Factor
  • Source
    • "In many of the previously reported Aβ immunization studies, researchers have found reduced cerebral Aβ levels and/or improved cognition in mice, nonhuman primates and humans [15,17-21]. Monoclonal antibodies against Aβ42 have been used in passive vaccination [22-25], including bapineuzumab, solanezumab and ponezumab [26-28]. Although selecting the B-cell epitopes for vaccines could avoid the T-cell response, short peptides do not have the same strong ability to stimulate a high titer of IgG and would therefore need to be modified, adding to the production cost and complexity of vaccine studies in AD [29]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction Vaccination against amyloid-β protein (Aβ42) induces high levels of antibody, making it a promising strategy for treating Alzheimer’s disease (AD). One drawback in the past was that clinical trial approval was withheld because of speculation that the Aβ42 vaccine induces CD4+ T cell infiltrations into the central nervous system. To reduce T-cell activation while concomitantly maintaining high anti-Aβ42 titers is a great challenge in immunology. Methods We aimed to demonstrate that coimmunization with Aβ42 protein and expression plasmid can be beneficial in a mouse AD model and can prevent inflammation. We immunized the AD mice with the coimmunization vaccine and assessed behavior change and Aβ42 deposition. Furthermore, to determine the safety of the coimmunization vaccine, we used an induced Aβ42-EAE model to mimic the meningoencephalitis that happened in the AN-1792 vaccine clinical phase II trial and tested whether the coimmunization vaccine could ameliorate T-cell-mediated brain inflammation. Results The coimmunization vaccination reduced Aβ plaques and significantly ameliorated cognitive deficit while inhibiting T-cell-mediated brain inflammation and infiltration. These studies demonstrate that the coimmunization strategy that we describe in this article can ameliorate AD pathology without notable adverse effects in mice. Conclusions A coimmunization strategy leading to the development of a safe immunotherapeutic/preventive protocol against AD in humans is warranted.
    Alzheimer's Research and Therapy 05/2014; 6(3):26. DOI:10.1186/alzrt256 · 3.98 Impact Factor
Show more

Similar Publications