Article

Synergistic antitumor effect of β-elemene and etoposide is mediated via induction of cell apoptosis and cell cycle arrest in non-small cell lung carcinoma cells.

Department of Respiratory Medicine, The First Hospital of China Medical University, Shenyang 110001, PR China.
Molecular Medicine Reports (Impact Factor: 1.17). 4(6):1189-93. DOI: 10.3892/mmr.2011.537
Source: PubMed

ABSTRACT β-Elemene, an anticancer agent, was isolated from the traditional Chinese medicine plant, curcuma aromatica. In this study, we investigated the synergistic antitumor effect of β-elemene and etoposide phosphate (VP-16) in A549 non-small cell lung carcinoma cells. The cells were treated with β-elemene (20 or 50 µg/ml), VP-16 (15 µg/ml) or the combination of both for 24 h. Compared to the treatment with β-elemene or VP-16 alone, an increased antitumor activity was observed with the combination of both, which was mediated by the cleavage of PARP, the up-regulation of Bax, p53 and p21, and the suppression of cyclin D1. These results suggest that the combination of β-elemene and VP-16 may be a promising therapeutic option for lung cancer.

0 Bookmarks
 · 
58 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Classical chemotherapeutic agents such as mitotic inhibitors (spindle poisons), alkylating agents, antimetabolites, topoisomerase inhibitors, and anthracenediones (anthracyclines) inhibit DNA synthesis and mitosis, thereby killing or impeding the proliferation of rapidly dividing cells. During the last decade, targeted therapy has gained advantage over conventional treatment regimens, as it is more effective against cancer and also much less harmful to normal cells, thus minimizing the side-effects of chemotherapy. This type of treatment blocks the proliferation of cancer cells by inhibiting the function of specific targeted molecules needed for tumor growth and metastasis. Targeted therapy agents include monoclonal antibodies and small-molecule inhibitors, which most commonly target receptor and/or non-receptor tyrosine kinases. Most members of the BCL2 apoptosis-related family regulate cellular fate as a response to antineoplastic agents. Modulations at the mRNA and protein levels of these genes are usually associated with sensitivity or resistance of various types of cancer cells to chemotherapeutic drugs. Moreover, alterations in expression of BCL2-family members, induced by anticancer drug treatment, can trigger or simply facilitate apoptosis. In this review, we summarize information about changes in apoptosis-related gene expression caused directly or indirectly by antineoplastic agents, as well as about the impact of BCL2-family members on the chemosensitivity or chemoresistance of cancer cells.
    Anti-cancer agents in medicinal chemistry 06/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies indicate that β-elemene, a compound isolated from the Chinese herbal medicine Curcuma wenyujin, is capable of reversing tumor MDR, although the mechanism remains elusive. In this study, β-Elemene treatment markedly increased the intracellular accumulation of doxorubicin (DOX) and rhodamine 123 in both K562/DNR and SGC7901/ADR cells and significantly inhibited the expression of P-gp. Treatment of SGC7901/ADR cells with β-elemene led to downregulation of Akt phosphorylation and significant upregulation of the E3 ubiquitin ligases, c-Cbl and Cbl-b. Importantly, β-elemene significantly enhanced the anti-tumor activity of DOX in nude mice bearing SGC7901/ADR xenografts. Taken together, our results suggest that β-elemene may target P-gp-overexpressing leukemia and gastric cancer cells to enhance the efficacy of DOX treatment.
    International Journal of Molecular Sciences 01/2013; 14(5):10075-89. · 2.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway is a key regulator of authophagy. Natural products show anticancer activity and often induce apoptosis or autophagy. The crosstalk between these two types of cell death makes autophagy an interesting target since drugs targeting this process not only can induce cell death by inducing autophagy but can also sensitize cells to apoptosis. Autophagy is also a protective mechanism associated with increased resistance to chemotherapy. In this review, we discuss natural products known to induce autophagy cell death in cancer cells via the PI3K/Akt/mTOR pathway.
    Anti-cancer agents in medicinal chemistry 12/2012;