Isolation and characterisation of a bacterial strain degrading the herbicide sulcotrione from an agricultural soil

Laboratoire de Chimie des Biomolécules et de l'Environnement, Université de Perpignan Via Domitia, Perpignan, France.
Pest Management Science (Impact Factor: 2.74). 03/2012; 68(3):340-7. DOI: 10.1002/ps.2263
Source: PubMed

ABSTRACT The dissipation kinetics of the herbicide sulcotrione sprayed 4 times on a French soil was studied using a laboratory microcosm approach. An advanced cultivation-based method was then used to isolate the bacteria responsible for biotransformation of sulcotrione. Chromatographic methods were employed as complementary tools to define its metabolic pathway.
Soil microflora was able quickly to biotransform the herbicide (DT(50) ≈ 8 days). 2-Chloro-4-mesylbenzoic acid, one of its main metabolites, was clearly detected. However, no accelerated biodegradation process was observed. Eight pure sulcotrione-resistant strains were isolated, but only one (1OP) was capable of degrading this herbicide with a relatively high efficiency and to use it as a sole source of carbon and energy. In parallel, another sulcotrione-resistant strain (1TRANS) was shown to be incapable of degrading the herbicide. Amplified ribosomal restriction analysis (ARDRA) and repetitive extragenic palendromic PCR genomic (REP-PCR) fingerprinting of strains 1OP and 1TRANS gave indistinguishable profiles.
Sequencing and aligning analysis of 16S rDNA genes of each pure strain revealed identical sequences and a close phylogenetic relationship (99% sequence identity) to Pseudomonas putida. Such physiological and genetic properties of 1OP to metabolise sulcotrione were probably governed by mobile genetic elements in the genome of the bacteria.


Available from: Christophe Calvayrac, Apr 22, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plant 4-hydroxyphenylpyruvate dioxygenase (HPPD) is the molecular target of a range of synthetic β-triketone herbicides that are currently used commercially. Their mode of action is based on an irreversible inhibition of HPPD. Therefore, this inhibitory capacity was used to develop a whole-cell colorimetric bioassay with a recombinant Escherichia coli expressing a plant HPPD for the herbicide analysis of β-triketones. The principle of the bioassay is based on the ability of the recombinant E. coli clone to produce a soluble melanin-like pigment, from tyrosine catabolism through p-hydroxyphenylpyruvate and homogentisate. The addition of sulcotrione, a HPPD inhibitor, decreased the pigment production. With the aim to optimize the assay, the E. coli recombinant clone was immobilized in sol-gel or agarose matrix in a 96-well microplate format. The limit of detection for mesotrione, tembotrione, sulcotrione, and leptospermone was 0.069, 0.051, 0.038, and 20 μM, respectively, allowing to validate the whole-cell colorimetric bioassay as a simple and cost-effective alternative tool for laboratory use. The bioassay results from sulcotrione-spiked soil samples were confirmed with high-performance liquid chromatography.
    Applied Microbiology and Biotechnology 05/2014; DOI:10.1007/s00253-014-5793-5 · 3.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cytotoxic effects of 2-chloro-4-mesylbenzoic acid (CMBA) and xanthene-1,9-dione-3,4-dihydro-6-methylsulphonyl (XDD), the two main photoproducts of sulcotrione, were investigated on Allium root meristematic cells at different concentrations. Degradation of sulcotrione was correlated to mitotic index decrease, together with increasing anomaly and c-mitosis frequencies. Mitotic index significantly decreased with increasing XDD and CMBA concentrations. Cell frequency with abnormal chromosomes increased with CMBA or XDD application rates. In contrast, CMBA induced a low micronucleus rate even for high concentrations while XDD increased the micronucleus ratio. C-mitoses, chromosomal aberrations due to an inactivation of the spindle, were enhanced by CMBA treatments but not by XDD. The photochemical degradation process of the pesticide can change the risk for the environment.
    Pesticide Biochemistry and Physiology 04/2015; DOI:10.1016/j.pestbp.2015.04.001 · 2.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pseudomonas sp. 1OP, previously isolated from a French agricultural soil, has been described as the first sulcotrione degrading bacteria. Different conditions of initial pH and herbicide concentration in liquid culture were tested to evaluate the growth performances of the isolate and its degrading capacity, with sulcotrione as the sole carbon and/or energy source. Maximal growth rate (μmax) was obtained under initial neutral conditions and with initial concentration of sulcotrione close to 180 μM, and was described, during the exponential phase, by a sigmoidal curve which could be easily fitted to the modified Gompertz equation. Complementary studies carried on the CMBA by-product and on another β-triketone herbicide showed the relative specificity of the strain against sulcotrione. The sulcotrione degrading phenotype of Pseudomonas sp.1OP was shown to be lost under non-selective conditions. Plasmid-Eckardt modified method, consecutively applied for plasmid profiling, showed that this strain carries one large plasmid (>12 kb) bearing putative genes involved in sulcotrione degradation, as demonstrated by curing experiment.
    International Biodeterioration & Biodegradation 07/2014; 91:104–110. DOI:10.1016/j.ibiod.2014.03.020 · 2.24 Impact Factor