Article

Isolation and characterisation of a bacterial strain degrading the herbicide sulcotrione from an agricultural soil.

Laboratoire de Chimie des Biomolécules et de l'Environnement, Université de Perpignan Via Domitia, Perpignan, France.
Pest Management Science (Impact Factor: 2.74). 09/2011; 68(3):340-7. DOI: 10.1002/ps.2263
Source: PubMed

ABSTRACT The dissipation kinetics of the herbicide sulcotrione sprayed 4 times on a French soil was studied using a laboratory microcosm approach. An advanced cultivation-based method was then used to isolate the bacteria responsible for biotransformation of sulcotrione. Chromatographic methods were employed as complementary tools to define its metabolic pathway.
Soil microflora was able quickly to biotransform the herbicide (DT(50) ≈ 8 days). 2-Chloro-4-mesylbenzoic acid, one of its main metabolites, was clearly detected. However, no accelerated biodegradation process was observed. Eight pure sulcotrione-resistant strains were isolated, but only one (1OP) was capable of degrading this herbicide with a relatively high efficiency and to use it as a sole source of carbon and energy. In parallel, another sulcotrione-resistant strain (1TRANS) was shown to be incapable of degrading the herbicide. Amplified ribosomal restriction analysis (ARDRA) and repetitive extragenic palendromic PCR genomic (REP-PCR) fingerprinting of strains 1OP and 1TRANS gave indistinguishable profiles.
Sequencing and aligning analysis of 16S rDNA genes of each pure strain revealed identical sequences and a close phylogenetic relationship (99% sequence identity) to Pseudomonas putida. Such physiological and genetic properties of 1OP to metabolise sulcotrione were probably governed by mobile genetic elements in the genome of the bacteria.

0 Bookmarks
 · 
155 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The photolytic behaviour of tembotrione, a new chemical herbicide intended for foliar application in corn, was investigated under unnatural and extreme photochemical exposure in aqueous solutions in the laboratory. It appeared that degradation was dependent on pH and occurred more rapidly under acidic and neutral conditions, leading predominantly to the formation of a xanthenedione type compound by intramolecular cyclisation with loss of HCl. Trace amounts of benzoic acid by-products appeared also during UV-C irradiation (λ = 254 nm) of the parent compound. Results were comparable to those obtained with sulcotrione, another β-triketone herbicide. These extreme irradiation conditions clearly accelerated the phototransformation of sulcotrione vs. simulated sunlight irradiation. Furthermore, the photolysis of the degradation by-products, resulting from either photolysis, hydrolysis or biotic pathways of the two active ingredients, was also carried out. The benzoic acid by-products appeared more stable to photolysis than their parent molecules. Xanthenedione derivatives were degraded more rapidly with several differences depending on the pH value.
    Science of The Total Environment 06/2013; · 3.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The photolytic behaviour of tembotrione, a new chemical herbicide intended for foliar application in corn, was investigated under unnatural and extreme photochemical exposure in aqueous solutions in the laboratory. It appeared that degradation was dependent on pH and occurred more rapidly under acidic and neutral conditions, leading predominantly to the formation of a xanthenedione type compound by intramolecular cyclisation with loss of HCl. Trace amounts of benzoic acid by-products appeared also during UV-C irradiation (λ=254nm) of the parent compound. Results were comparable to those obtained with sulcotrione, another β-triketone herbicide. These extreme irradiation conditions clearly accelerated the phototransformation of sulcotrione vs. simulated sunlight irradiation. Furthermore, the photolysis of the degradation by-products, resulting from either photolysis, hydrolysis or biotic pathways of the two active ingredients, was also carried out. The benzoic acid by-products appeared more stable to photolysis than their parent molecules. Xanthenedione derivatives were degraded more rapidly with several differences depending on the pH value.
    Science of The Total Environment 03/2013; 452-453C:227-232. · 3.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Plant 4-hydroxyphenylpyruvate dioxygenase (HPPD) is the molecular target of a range of synthetic β-triketone herbicides that are currently used commercially. Their mode of action is based on an irreversible inhibition of HPPD. Therefore, this inhibitory capacity was used to develop a whole-cell colorimetric bioassay with a recombinant Escherichia coli expressing a plant HPPD for the herbicide analysis of β-triketones. The principle of the bioassay is based on the ability of the recombinant E. coli clone to produce a soluble melanin-like pigment, from tyrosine catabolism through p-hydroxyphenylpyruvate and homogentisate. The addition of sulcotrione, a HPPD inhibitor, decreased the pigment production. With the aim to optimize the assay, the E. coli recombinant clone was immobilized in sol-gel or agarose matrix in a 96-well microplate format. The limit of detection for mesotrione, tembotrione, sulcotrione, and leptospermone was 0.069, 0.051, 0.038, and 20 μM, respectively, allowing to validate the whole-cell colorimetric bioassay as a simple and cost-effective alternative tool for laboratory use. The bioassay results from sulcotrione-spiked soil samples were confirmed with high-performance liquid chromatography.
    Applied Microbiology and Biotechnology 05/2014; · 3.69 Impact Factor

Full-text

View
30 Downloads
Available from
Jun 2, 2014