C-122, a novel antagonist of serotonin receptor 5-HT2B, prevents monocrotaline-induced pulmonary arterial hypertension in rats

Corridor Pharmaceuticals, Inc., Towson, MD, USA.
European journal of pharmacology (Impact Factor: 2.68). 09/2011; 670(1):195-203. DOI: 10.1016/j.ejphar.2011.08.015
Source: PubMed

ABSTRACT Pulmonary arterial hypertension (PAH) is a chronic disease characterized by sustained elevation of pulmonary arterial pressure that leads to right ventricle failure and death. Pulmonary resistance arterioles in PAH undergo progressive narrowing and/or occlusion. Currently approved therapies for PAH are directed primarily at relief of symptoms by interfering with vasoconstrictive signals, but do not halt the microvascular cytoproliferative process. In this study we show that C-122 (2-amino-N-(2-{4-[3-(2-trifluoromethyl-phenothiazin-10-yl)-propyl]-piperazin-1-yl}-ethyl)-acetamide trihydrochloride, a novel antagonist of serotonin receptor 5-HT(2B) (Ki=5.2 nM, IC(50)=6.9 nM), when administered to rats for three weeks in daily oral 10mg/kg doses, prevents not only monocrotaline (MCT)-induced elevations in pressure in the pulmonary arterial circuit (19 ± 0.9 mmHg vs. 28 ± 2 mmHg in MCT-vehicle group, P<0.05) and hypertrophy of the right ventricle (right ventricular wt./body wt. ratio 0.52 ± 0.02 vs. 0.64 ± 0.04 in MCT-vehicle group, P<0.05), but also muscularization of pulmonary arterioles (23% vs. 56% fully muscularized in MCT-vehicle group, P<0.05), and perivascular fibrosis in the lung. C-122 is orally absorbed in the rat, and partitions strongly into multiple tissues, including heart and lung. C-122 has significant off-target antagonist activity for histamine H-1 and several dopamine receptors, but shows no evidence of crossing the blood-brain barrier after a single 10mg/kg oral dose in rats. We conclude that C-122 can prevent microvascular remodeling and associated elevated pressures in the rat MCT model for PAH, and offers promise as a new therapeutic entity to suppress vascular smooth muscle cell proliferation in PAH patients.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pulmonary arterial hypertension (PAH) is a progressive disease characterized by lung endothelial dysfunction and vascular remodeling. Recently, bone marrow progenitor cells have been localized to PAH lungs, raising the question of their role in disease progression. Independently, serotonin (5-HT) and its receptors have been identified as contributors to the PAH pathogenesis. We hypothesized that 1 of these receptors, 5-HT(2B), is involved in bone marrow stem cell mobilization that participates in the development of PAH and pulmonary vascular remodeling. A first study revealed expression of 5-HT(2B) receptors by circulating c-kit(+) precursor cells, whereas mice lacking 5-HT(2B) receptors showed alterations in platelets and monocyte-macrophage numbers, and in myeloid lineages of bone marrow. Strikingly, mice with restricted expression of 5-HT(2B) receptors in bone marrow cells developed hypoxia or monocrotaline-induced increase in pulmonary pressure and vascular remodeling, whereas restricted elimination of 5-HT(2B) receptors on bone marrow cells confers a complete resistance. Moreover, ex vivo culture of human CD34(+) or mice c-kit(+) progenitor cells in the presence of a 5-HT(2B) receptor antagonist resulted in altered myeloid differentiation potential. Thus, we demonstrate that activation of 5-HT(2B) receptors on bone marrow lineage progenitors is critical for the development of PAH.
    Blood 12/2011; 119(7):1772-80. DOI:10.1182/blood-2011-06-358374 · 9.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pulmonary arterial hypertension (PAH) is a life-threatening and progressive disease of various origins characterized by pulmonary vascular remodeling that leads to increased pulmonary vascular resistance and pulmonary arterial pressure, most often resulting in right-sided heart failure. The most common symptom at presentation is breathlessness, with impaired exercise capacity as a hallmark of the disease. Advances in understanding the pathobiology over the last 2 decades have led to therapies (endothelin receptor antagonists, phosphodiesterase type 5 inhibitors, and prostacyclins or analogs) initially directed at reversing the pulmonary vasoconstriction and more recently directed toward reversing endothelial cell dysfunction and smooth muscle cell proliferation. Despite these advances, disease progression is common even with use of combination regimens targeting multiple mechanistic pathways. Overall 5-year survival for PAH has increased significantly from approximately 30% in the 1980s to approximately 60% at present, yet remains abysmal. This review summarizes the mechanisms of action, clinical data, and regulatory histories of approved PAH therapies and describes the latest agents in late-stage clinical development.
    Pharmacological reviews 06/2012; 64(3):583-620. DOI:10.1124/pr.111.005587 · 18.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An elevated plasma level of 5-hydroxytryptamine (5-HT) or upregulation of 5-HT receptor signaling or both is implicated in vascular contraction and remodeling in pulmonary arterial hypertension (PAH). Recently, peroxisome proliferator-activated receptor-γ (PPARγ) agonists have been shown to ameliorate PAH. However, their effects on the 5-HT-induced contraction of pulmonary arteries remain unknown. Here, we examined the role of PPARγ in inhibiting 5-HT2B receptor (5-HT2BR) to ameliorate PAH. Pulmonary arteries from PAH rats induced by monocrotaline or chronic hypoxia showed an enhanced vasoconstriction in response to BW723C86, a specific agonist for 5-HT2BR. Expression of 5-HT2BR was also increased in pulmonary arteries from the PAH rats, accompanied by vascular remodeling and right ventricular hypertrophy. Treatment with the PPARγ agonist rosiglitazone in vivo reversed the expression and the vasocontractive effect of 5-HT2BR as well as the thickening of pulmonary arteries. In pulmonary artery smooth muscle cells, 5-HT induced the gene expression of 5-HT2BR, which was inhibited by rosiglitazone, pioglitazone, or adenovirus-mediated overexpression of constitutively activated PPARγ. The pharmacological effect of PPARγ was through the suppression of the 5-HT-induced activator protein-1 activity. These results demonstrated the beneficial effect of PPARγ on 5-HT2BR-mediated vasocontraction, providing a new mechanism for the potential use of PPARγ agonists in PAH.
    Hypertension 10/2012; 60(6). DOI:10.1161/HYPERTENSIONAHA.112.198887 · 7.63 Impact Factor


Available from