Relativistic pseudopotentials: their development and scope of applications.

Theoretical Chemistry, University of Cologne, Greinstrasse 4, 50939 Cologne, Germany.
Chemical Reviews (Impact Factor: 41.3). 09/2011; 112(1):403-80. DOI: 10.1021/cr2001383
Source: PubMed
1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: Complexes of dysprosium, holmium, and erbium find many applications as single-molecule magnets, as contrast agents for magnetic resonance imaging, as anti-cancer agents, in optical telecommunications, etc. Therefore, the development of tools that can be proven helpful to complex design is presently an active area of research. In this article, we advance a major improvement to the semiempirical description of lanthanide complexes: the Recife Model 1, RM1, model for the lanthanides, parameterized for the trications of Dy, Ho, and Er. By representing such lanthanide in the RM1 calculation as a three-electron atom with a set of 5 d, 6 s, and 6 p semiempirical orbitals, the accuracy of the previous sparkle models, mainly concentrated on lanthanide-oxygen and lanthanide-nitrogen distances, is extended to other types of bonds in the trication complexes' coordination polyhedra, such as lanthanide-carbon, lanthanide-chlorine, etc. This is even more important as, for example, lanthanide-carbon atom distances in the coordination polyhedra of the complexes comprise about 30% of all distances for all complexes of Dy, Ho, and Er considered. Our results indicate that the average unsigned mean error for the lanthanide-carbon distances dropped from an average of 0.30 Å, for the sparkle models, to 0.04 Å for the RM1 model for the lanthanides; for a total of 509 such distances for the set of all Dy, Ho, and Er complexes considered. A similar behavior took place for the other distances as well, such as lanthanide-chlorine, lanthanide-bromine, lanthanide, phosphorus and lanthanide-sulfur. Thus, the RM1 model for the lanthanides, being advanced in this article, broadens the range of application of semiempirical models to lanthanide complexes by including comprehensively many other types of bonds not adequately described by the previous models.
    PLoS ONE 01/2014; 9(1):e86376. · 3.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The intermetallic molecules CuSb, AgSb, and AuSb were identified in the effusive molecular beam produced at high temperature under equilibrium conditions in a double-cell-like Knudsen source. Several gaseous equilibria involving these species were studied by mass spectrometry as a function of temperature in the overall range 1349-1822 K, and the strength of the chemical bond formed between antimony and the group 11 metals was for the first time measured deriving the following thermochemical dissociation energies ([Formula: see text], kJ/mol): 186.7 ± 5.1 (CuSb), 156.3 ± 4.9 (AgSb), 241.3 ± 5.8 (AuSb). The three species were also investigated computationally at the coupled cluster level with single, double, and noniterative quasiperturbative triple excitations (CCSD(T)). The spectroscopic parameters were calculated from the potential energy curves and the dissociation energies were evaluated at the Complete Basis Set limit, resulting in an overall good agreement with experimental values. An approximate evaluation of the spin-orbit effect was also performed. CCSD(T) calculations were further extended to the corresponding group 11 arsenide species which are here studied for the first time and the following dissociation energies ([Formula: see text], kJ/mol): 190 ± 10 (CuAs), 151 ± 10 (AgAs), 240 ± 15 (AuAs) are proposed. Taking advantage of the new experimental and computational information here presented, the bond energy trends along group 11 and 4th and 5th periods of the periodic table were analyzed and the bond energies of the diatomic species CuBi and AuBi, yet experimentally unobserved, were predicted on an empirical basis.
    The Journal of Chemical Physics 02/2014; 140(6):064305. · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The stability trends across the lanthanide series of complexes with the polyaminocarboxylate ligands TETA(4-) (H4 TETA=2,2',2'',2'''-(1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetrayl)tetraacetic acid), BCAED(4-) (H4 BCAED=2,2',2'',2'''-{[(1,4-diazepane-1,4-diyl)bis(ethane-2,1-diyl)]bis(azanetriyl)}tetraacetic acid), and BP18C6(2-) (H2 BP18C6=6,6'-[(1,4,10,13-tetraoxa-7,16-diazacyclooctadecane-7,16-diyl)bis(methylene)]dipicolinic acid) were investigated using DFT calculations. Geometry optimizations performed at the TPSSh/6-31G(d,p) level, and using a 46+4f(n) ECP for lanthanides, provide bond lengths of the metal coordination environments in good agreement with the experimental values observed in the X-ray structures. The contractions of the Ln(3+) coordination spheres follow quadratic trends, as observed previously for different isostructural series of complexes. We show here that the parameters obtained from the quantitative analysis of these data can be used to rationalize the observed stability trends across the 4f period. The stability trends along the lanthanide series were also evaluated by calculating the free energy for the reaction [La(L)](n+/-) (sol) +Ln(3+) (sol) →[Ln(L)](n+/-) (sol) +La(3+) (sol) . A parameterization of the Ln(3+) radii was performed by minimizing the differences between experimental and calculated standard hydration free energies. The calculated stability trends are in good agreement with the experimental stability constants, which increase markedly across the series for BCAED(4-) complexes, increase smoothly for the TETA(4-) analogues, and decrease in the case of BP18C6(2-) complexes. The resulting stability trend is the result of a subtle balance between the increased binding energies of the ligand across the lanthanide series, which contribute to an increasing complex stability, and the increase in the absolute values of hydration energies along the 4f period.
    Chemistry 02/2014; · 5.93 Impact Factor