Article

A potential pathogenic role of oxalate in autism

Department of Pediatrics and Developmental Disorders, Medical University of Bialystok, Poland.
European journal of paediatric neurology: EJPN: official journal of the European Paediatric Neurology Society (Impact Factor: 1.93). 09/2011; 16(5):485-91. DOI: 10.1016/j.ejpn.2011.08.004
Source: PubMed

ABSTRACT Although autistic spectrum disorders (ASD) are a strongly genetic condition certain metabolic disturbances may contribute to clinical features. Metabolism of oxalate in children with ASD has not yet been studied.
The objective was to determine oxalate levels in plasma and urine in autistic children in relation to other urinary parameters.
In this cross-sectional study, plasma oxalate (using enzymatic method with oxalate oxidase) and spontaneous urinary calcium oxalate (CaOx) crystallization (based on the Bonn-Risk-Index, BRI) were determined in 36 children and adolescents with ASD (26 boys, 10 girls) aged 2-18 years and compared with 60 healthy non-autistic children matched by age, gender and anthropometric traits.
Children with ASD demonstrated 3-fold greater plasma oxalate levels [5.60 (5th-95th percentile: 3.47-7.51)] compared with reference [(1.84 (5th-95th percentile: 0.50-4.70) μmol/L (p < 0.05)] and 2.5-fold greater urinary oxalate concentrations (p < 0.05). No differences between the two groups were found in urinary pH, citraturia, calciuria or adjusted CaOx crystallization rates based on BRI. Despite significant hyperoxaluria no evidence of kidney stone disease or lithogenic risk was observed in these individuals.
Hyperoxalemia and hyperoxaluria may be involved in the pathogenesis of ASD in children. Whether this is a result of impaired renal excretion or an extensive intestinal absorption, or both, or whether Ox may cross the blood brain barrier and disturb CNS function in the autistic children remains unclear. This appears to be the first report of plasma and urinary oxalate in childhood autism.

Download full-text

Full-text

Available from: Jolanta Wasilewska, Jun 22, 2015
1 Follower
 · 
327 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Manganese (Mn) is an often overlooked but important nutrient, required in small amounts for multiple essential functions in the body. A recent study on cows fed genetically modified Roundup®‐Ready feed revealed a severe depletion of serum Mn. Glyphosate, the active ingredient in Roundup®, has also been shown to severely deplete Mn levels in plants. Here, we investigate the impact of Mn on physiology, and its association with gut dysbiosis as well as neuropathologies such as autism, Alzheimer’s disease (AD), depression, anxiety syndrome, Parkinson’s disease (PD), and prion diseases. Glutamate overexpression in the brain in association with autism, AD, and other neurological diseases can be explained by Mn deficiency. Mn superoxide dismutase protects mitochondria from oxidative damage, and mitochondrial dysfunction is a key feature of autism and Alzheimer’s. Chondroitin sulfate synthesis depends on Mn, and its deficiency leads to osteoporosis and osteomalacia. Lactobacillus, depleted in autism, depend critically on Mn for antioxidant protection. Lactobacillus probiotics can treat anxiety, which is a comorbidity of autism and chronic fatigue syndrome. Reduced gut Lactobacillus leads to overgrowth of the pathogen, Salmonella, which is resistant to glyphosate toxicity, and Mn plays a role here as well. Sperm motility depends on Mn, and this may partially explain increased rates of infertility and birth defects. We further reason that, under conditions of adequate Mn in the diet, glyphosate, through its disruption of bile acid homeostasis, ironically promotes toxic accumulation of Mn in the brainstem, leading to conditions such as PD and prion diseases.
    Surgical Neurology International 03/2015; 6(1):45. DOI:10.4103/2152-7806.153876 · 1.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autism is the fastest growing developmental disorder in the world today. The prevalence of autism in the US has risen from 1 in 2500 in 1970 to 1 in 88 children today. People with autism present with repetitive movements and with social and communication impairments. These impairments can range from mild to profound. The estimated total lifetime societal cost of caring for one individual with autism is $3.2 million US dollars. With the rapid growth in this disorder and the great expense of caring for those with autism, it is imperative for both individuals and society that techniques be developed to model and understand autism. There is increasing evidence that those individuals diagnosed with autism present with highly diverse set of abnormalities affecting multiple systems of the body. To this date, little to no work has been done using a whole body systems biology approach to model the characteristics of this disorder. Identification and modelling of these systems might lead to new and improved treatment protocols, better diagnosis and treatment of the affected systems, which might lead to improved quality of life by themselves, and, in addition, might also help the core symptoms of autism due to the potential interconnections between the brain and nervous system with all these other systems being modeled. This paper first reviews research which shows that autism impacts many systems in the body, including the metabolic, mitochondrial, immunological, gastrointestinal and the neurological. These systems interact in complex and highly interdependent ways. Many of these disturbances have effects in most of the systems of the body. In particular, clinical evidence exists for increased oxidative stress, inflammation, and immune and mitochondrial dysfunction which can affect almost every cell in the body. Three promising research areas are discussed, hierarchical, subgroup analysis and modeling over time. This paper reviews some of the systems disturbed in autism and suggests several systems biology research areas. Autism poses a rich test bed for systems biology modeling techniques.
    10/2012; 2(1):17. DOI:10.1186/2043-9113-2-17
  • [Show abstract] [Hide abstract]
    ABSTRACT: Blood and urine oxalate determinations have been limited to the laboratory setting due to complex sample storage and processing methods as well as the need for color spectrophotometry and ion chromatography. We hypothesized that glucometer test strips, impregnated with glucose oxidase and dyes that measure secondary hydrogen peroxide production, could be infused with oxalate oxidase and produce enhanced color changes in the presence of oxalate. By increasing the amount of sodium oxalate in fresh blood, we found that glucometer-measured oxalate increased on a linear scale. Additionally, oxalate levels in synthetic urine could be measured using a visual scale, suggesting that strip dwell time or oxalate/oxalate oxidase concentrations could be manipulated to enhance optimal sensitivity. Although further testing is necessary, this simple, first-generation oxometer may eventually allow point of care testing in the home or office, empowering patients with oxalate-based medical conditions and giving healthcare providers real-time oxalate feedback.
    Journal of endourology / Endourological Society 09/2012; 27(2). DOI:10.1089/end.2012.0438 · 2.10 Impact Factor