A pre-mRNA-associating factor links endogenous siRNAs to chromatin regulation.

Laboratory of Genetics, University of Wisconsin Madison, Madison, Wisconsin, United States of America.
PLoS Genetics (Impact Factor: 8.52). 08/2011; 7(8):e1002249. DOI: 10.1371/journal.pgen.1002249
Source: PubMed

ABSTRACT In plants and fungi, small RNAs silence gene expression in the nucleus by establishing repressive chromatin states. The role of endogenous small RNAs in metazoan nuclei is largely unknown. Here we show that endogenous small interfering RNAs (endo-siRNAs) direct Histone H3 Lysine 9 methylation (H3K9me) in Caenorhabditis elegans. In addition, we report the identification and characterization of nuclear RNAi defective (nrde)-1 and nrde-4. Endo-siRNA-driven H3K9me requires the nuclear RNAi pathway including the Argonaute (Ago) NRDE-3, the conserved nuclear RNAi factor NRDE-2, as well as NRDE-1 and NRDE-4. Small RNAs direct NRDE-1 to associate with the pre-mRNA and chromatin of genes, which have been targeted by RNAi. NRDE-3 and NRDE-2 are required for the association of NRDE-1 with pre-mRNA and chromatin. NRDE-4 is required for NRDE-1/chromatin association, but not NRDE-1/pre-mRNA association. These data establish that NRDE-1 is a novel pre-mRNA and chromatin-associating factor that links small RNAs to H3K9 methylation. In addition, these results demonstrate that endo-siRNAs direct chromatin modifications via the Nrde pathway in C. elegans.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Cells can adapt to their environment and develop distinct identities by rewiring their transcriptional networks to regulate the output of key biological pathways without concomitant mutations to the underlying genes. These alterations, called epigenetic changes, persist stably through mitotic or, in some instances, meiotic cell divisions. In eukaryotes, heritable changes to chromatin structure are a prominent, but not exclusive, mechanism by which epigenetic changes are mediated. These changes are initiated by sequence-specific events, which trigger a cascade of molecular interactions resulting in feedback mechanisms, alterations in chromatin structure, histone posttranslational modifications (PTMs), and ultimately establishment of distinct transcriptional states. In recent years, advances in next generation sequencing have led to the discovery of several novel classes of noncoding RNAs (ncRNAs). In addition to their well-established cytoplasmic roles in posttranscriptional regulation of gene expression, ncRNAs have emerged as key regulators of epigenetic changes via chromatin-dependent mechanisms in organisms ranging from yeast to man. They function by affecting chromatin structure, histone PTMs, and the recruitment of transcriptional activating or repressing complexes. Among histone PTMs, lysine methylation serves as the binding substrate for the recruitment of key protein complexes involved in regulation of genome architecture, stability, and gene expression. In this review, we will outline the known mechanisms by which ncRNAs of different origins regulate histone methylation, and in doing so contribute to a variety of genome regulatory functions in eukaryotes. This article is part of a Special Issue entitled: Methylation Multifaceted Modification - looking at transcription and beyond.
    Biochimica et biophysica acta. 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Small RNAs are important regulators of gene expression in many different organisms. Nuclear and cytoplasmic biogenesis enzymes generate functional small RNAs from double-stranded (ds) or single-stranded (ss) RNA precursors, and mature small RNAs are loaded into Argonaute proteins. In the cytoplasm, small RNAs guide Argonaute proteins to complementary RNAs leading to cleavage of these targets, translational silencing, or mRNA decay. In the nucleus Argonaute proteins engage in transcriptional silencing processes such as epigenetic silencing of repetitive elements at the chromatin level. During the past few years many novel functions of small RNA-guided gene silencing proteins in the nucleus have been reported. However, their specific import routes are largely unknown. In this review we summarize the current knowledge on nuclear transport routes that Argonaute and other RNA-silencing proteins take to carry out their various functions in the nucleus.
    Trends in biochemical sciences. 01/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many eukaryotic genes contain embedded antisense transcripts and repetitive sequences of unknown function. We report that male germline-specific expression of an antisense transcript contained in an intron of C. elegans Target of Rapamycin (TOR, let-363) is associated with (1) accumulation of endo-small interfering RNAs (siRNAs) against an embedded Helitron transposon and (2) activation of an alternative 3' splice site of TOR. The germline-specific Argonaute proteins PRG-1 and CSR-1, which participate in self/nonself RNA recognition, antagonistically regulate the generation of these endo-siRNAs, TOR mRNA levels, and 3' splice-site selection. Supply of exogenous double-stranded RNA against the region of sense/antisense overlap reverses changes in TOR expression and splicing and suppresses the progressive multigenerational sterility phenotype of prg-1 mutants. We propose that recognition of a "nonself" intronic transposon by endo-siRNAs/the piRNA system provides physiological regulation of expression and alternative splicing of a host gene that, in turn, contributes to the maintenance of germline function across generations.
    Cell reports. 09/2014;