p38 MAPK activation, JNK inhibition, neoplastic growth inhibition, and increased gap junction communication in human lung carcinoma and Ras-transformed cells by 4-phenyl-3-butenoic acid.

Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Mercer University, Atlanta, Georgia 30341, USA.
Journal of Cellular Biochemistry (Impact Factor: 3.37). 09/2011; 113(1):269-81. DOI: 10.1002/jcb.23353
Source: PubMed

ABSTRACT Human lung neoplasms frequently express mutations that down-regulate expression of various tumor suppressor molecules, including mitogen-activated protein kinases such as p38 MAPK. Conversely, activation of p38 MAPK in tumor cells results in cancer cell cycle inhibition or apoptosis initiated by chemotherapeutic agents such as retinoids or cisplatin, and is therefore an attractive approach for experimental anti-tumor therapies. We now report that 4-phenyl-3-butenoic acid (PBA), an experimental compound that reverses the transformed phenotype at non-cytotoxic concentrations, activates p38 MAPK in tumorigenic cells at concentrations and treatment times that correlate with decreased cell growth and increased cell-cell communication. H2009 human lung carcinoma cells and ras-transformed rat liver epithelial cells treated with PBA showed increased activation of p38 MAPK and its downstream effectors which occurred after 4 h and lasted beyond 48 h. Untransformed plasmid control cells showed low activation of p38 MAPK compared to ras-transformed and H2009 carcinoma cells, which correlates with the reduced effect of PBA on untransformed cell growth. The p38 MAPK inhibitor, SB203580, negated PBA's activation of p38 MAPK downstream effectors. PBA also increased cell-cell communication and connexin 43 phosphorylation in ras-transformed cells, which were prevented by SB203580. In addition, PBA decreased activation of JNK, which is upregulated in many cancers. Taken together, these results suggest that PBA exerts its growth regulatory effect in tumorigenic cells by concomitant up-regulation of p38 MAPK activity, altered connexin 43 expression, and down-regulation of JNK activity. PBA may therefore be an effective therapeutic agent in human cancers that exhibit down-regulated p38 MAPK activity and/or activated JNK and altered cell-cell communication.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Infrasonic noise/infrasound is a type of environmental noise that threatens public health as a nonspecific biological stressor. Glutamate-related excitotoxicity is thought to be responsible for infrasound-induced impairment of learning and memory. In addition to neurons, astrocytes are also capable of releasing glutamate. In the present study, to identify the effect of infrasound on astroglial glutamate release, cultured astrocytes were exposed to infrasound at 16 Hz, 130 dB for different times. We found that infrasound exposure caused a significant increase in glutamate levels in the extracellular fluid. Moreover, blocking the connexin43 (Cx43) hemichannel or gap junction, decreasing the probability of Cx43 being open or inhibiting of Cx43 expression blocked this increase. The results suggest that glutamate release by Cx43 hemichannels/gap junctions is involved in the response of cultured astrocytes to infrasound.
    Neurochemical Research 03/2014; · 2.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: c-Jun N-terminal Kinase (JNK) is a family of protein kinases, which are activated by stress stimuli such as inflammation, heat stress and osmotic stress, and regulate diverse cellular processes including proliferation, survival and apoptosis. In this review, we focus on a recently discovered function of JNK as a regulator of intercellular adhesion. We summarize the existing knowledge regarding the role of JNK during the formation of cell-cell junctions. The potential mechanisms and implications for processes requiring dynamic formation and dissolution of cell-cell junctions including wound healing, migration, cancer metastasis and stem cell differentiation are also discussed.
    Tissue barriers. 12/2013; 1(5):e26845.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cell-cell communication through gap junctions is aberrant or absent in a majority of human cancer cells, compared to cells in corresponding normal tissues. This and other evidence has led to the hypothesis that gap junction channels, comprised of connexin proteins, are important in growth control and cancer progression. The major goal of this ongoing study was to identify bioactive compounds that specifically upregulate gap junction channel-mediated cell-cell communication as potential anti-tumor therapies. Control of cell-cell communication is linked to growth regulatory intracellular signaling pathways; we therefore further aimed to identify signaling pathways modulated by these compounds in order to assess their potential as targeted anti-tumor therapies. Compounds were screened for their ability to upregulate gap junction-mediated cell-cell communication by using a fluorescent dye transfer assay to measure cell-cell communication between tumor promoter-treated astroglial cells or ras-transformed epithelial cells. Western blotting using connexinspecific and phosphorylation site-specific antibodies was used to monitor phosphorylation changes in signaling pathway proteins. Our results identified three compounds that upregulate gap junction-mediated cell-cell communication in our screening assays, chaetoglobosin K(ChK), 4-phenyl-3-butenoic acid (PBA) and the methyl ester of PBA (PBA-Me). Further analyses demonstrated that in tumorigenic cells, ChK downregulates phosphorylation of Akt kinase, an enzyme in the PI3-kinase signaling pathway that is found to be upregulated in a number of human cancers, on a key activation site. However, ChK did not inhibit PI-3 kinase in vitro as did the classic PI-3 kinase inhibitor, Wortmannin. PBA and PBA-Me were found to upregulate phosphorylation of p38 MAPK on a key activation site in tumorigenic cells, which is downregulated in several human cancer cell types. ChK and PBA also decreased activation of SAPK/JNK, another kinase found to be upregulated in a number of human cancers. These studies highlight the potential of monitoring gap junction intercellular communication for identifying experimental anti-tumor compounds.
    Current Bioactive Compounds 01/2013; 9(3).