Article

Distinguishing the proapoptotic and antiresorptive functions of risedronate in murine osteoclasts: Role of the Akt pathway and the ERK/Bim axis

University of Tokyo, Bunkyo-ku, Tokyo, Japan.
Arthritis & Rheumatology (Impact Factor: 7.48). 12/2011; 63(12):3908-17. DOI: 10.1002/art.30646
Source: PubMed

ABSTRACT Nitrogen-containing bisphosphonates are one of the most successful therapeutics for osteoporosis. The aim of this study was to elucidate the functional mechanism of one of the typical nitrogen-containing bisphosphonates, risedronate.
Osteoclasts generated from murine bone marrow macrophages were treated with risedronate in vitro, and its effects on apoptosis and bone-resorbing activity were examined. The mechanism of action of risedronate was examined by gene induction of constitutively active Akt-1 and constitutively active MEK-1, and by gene deletion of Bim. Bim(-/-) mice, in which osteoclasts were resistant to apoptosis, were treated with risedronate and analyzed radiographically, biochemically, and histologically.
Risedronate induced osteoclast apoptosis through the mitochondria-dependent pathway with an increased expression of Bim, and the proapoptotic effect of risedronate was suppressed by Bim deletion and constitutively active MEK-1 introduction. In contrast, the risedronate-induced suppression of bone resorption was completely reversed by inducing constitutively active Akt-1, but not by Bim deletion or constitutively active MEK-1 introduction. These results suggested that apoptosis and bone-resorbing activity of osteoclasts were regulated through the ERK/Bim axis and the Akt pathway, respectively, both of which were suppressed by risedronate. Although osteoclast apoptosis in response to risedronate administration was suppressed in the Bim(-/-) mice, risedronate treatment increased bone mineral density in Bim(-/-) mice at a level equivalent to that in wild-type mice.
Our findings indicate that the antiresorptive effect of risedronate in vivo is mainly mediated by the suppression of the bone-resorbing activity of osteoclasts and not by the induction of osteoclast apoptosis.

0 Bookmarks
 · 
105 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The osteoclast has been considered classically as a cell with the exclusive function of bone remodelling, with a gregarious behaviour. However, advances which have been made in recent years have changed this concept drastically, and we now know that this multinuclear cell is subject to complex biological regulation, necessary for it to exert a multifunctional role of unknown dimensions. In addition to its participation as the only cell capable of reabsorbing the calcified bone matrix, the osteoclast is one of the cellular elements effective in the immune system, a function still little-known but expected, given its belonging to the monocyte-macrophage lineage. Its role in other processes, both local, such as as a collaborative element in osteoformation and hematopoietic stem cell niche maintenance, and systemic, is also beginning to be understood. In this review the most significant findings contributing to our understanding of the biology of the osteoclast are analysed, with an eminently practical content and an approach aimed at understanding the possible molecular targets which will allow a better therapeutic treatment of such important diseases as osteoporosis, arthritis or cancer. Key words: osteoclasts, osteoporosis, arthritis, RANKL.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An increase of serum creatine kinase (CK) has been observed in clinical studies of nitrogen-containing aminobisphosphonates (N-BPs). Osteoclasts are thought to be the source of the CK, but there is no clear evidence for the hypothesis. In this study, CK release from rabbit osteoclasts induced by N-BPs was examined in an in vitro culture system. Rabbit bone-derived cells were cultured for 3 days on the N-BPs pretreated cortical bone slices. CK activity in the culture medium was measured at 3 days of culture. The CK activity was increased with all N-BPs at concentrations at which showed antiresorptive activity over 60% inhibition of C-terminal cross-linking telopeptide of type I collagen (CTX-1) release. The maximum induction of CK activity was 2.6 times the control level. The lowest N-BP concentration inducing CK release was 3 times lower than that required to decrease the osteoclast number. Bafilomycin A1, an inhibitor of vacuolar H(+)-ATPase, abrogated all N-BP actions, including CK release. Bone-derived cells except osteoclasts were insensitive to bafilomycin A1, suggesting that osteoclasts were the source of CK. Regarding the time course, CK release occurred after a 1 day lag time and increased steadily until day 3 of culture. These results show that CK release is induced by N-BPs from osteoclasts at concentrations at which N-BPs show antiresorptive activity over 60% inhibition of CTX-1 release in vitro. These findings explain the mechanism of the CK increase induced by clinical use of N-BPs.
    SpringerPlus 12/2015; 4(1):59. DOI:10.1186/s40064-015-0848-3
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study was designed to investigate the potential effect of bergapten on lipopolysaccharide (LPS)-mediated osteoclast formation, bone resorption and osteoclast survival in vitro. After osteoclast precursor RAW264.7 cells were treated with bergapten (5, 20, 40 μmol/L) for 72 hours in the presence of LPS (100 ng/ml), osteoclastogenesis was identified by tartrate-resistant acid phosphatase (TRAP) staining, and the number of TRAP-positive multinucleated cells [TRAP(+)MNCs] per well were counted. To investigate the effect of bergapten on osteoclastic bone resorption, RAW264.7 cells were treated with bergapten for six days in the presence of LPS, and the area of bone resorption was analyzed with Image Pro-Plus. Next, we examined apoptosis of RAW264.7 cells after bergapten incubation for 48 hours by flow cytometer using annexin V/propidium iodide (PI) double labeling. Finally, osteoclast survival was observed by Hoechst 33342 labeling and Western blotting after bergapten treatment for 24 hours. Data showed that bergapten (5-40 μmol/L) dose-dependently inhibited LPS-induced osteoclast formation and bone resorption. Treatment with bergapten triggered apoptotic death of osteoclast precursor RAW264.7 cells in a dose-dependent manner. Furthermore, bergapten significantly reduced the survival of mature osteoclast, as demonstrated by emergence of apoptotic nuclei and activation of apoptotic protein caspase 3/9. These findings suggest that bergapten effectively prevents LPS-induced osteoclastogenesis, bone resorption and survival via apoptotic response of osteoclasts and their precursors. The study identifies bergapten as an inhibitor of osteoclast formation and bone resorption and provides evidence that bergapten might be beneficial as an alternative for prevention and treatment of inflammatory bone loss.
    International Orthopaedics 12/2013; 38(3). DOI:10.1007/s00264-013-2184-y · 2.02 Impact Factor