Article

Bone Mineral Density in HIV-Negative Men Participating in a Tenofovir Pre-Exposure Prophylaxis Randomized Clinical Trial in San Francisco

San Francisco Department of Public Health, San Francisco, California, United States of America.
PLoS ONE (Impact Factor: 3.53). 08/2011; 6(8):e23688. DOI: 10.1371/journal.pone.0023688
Source: PubMed

ABSTRACT Pre-exposure prophylaxis (PrEP) trials are evaluating regimens containing tenofovir-disoproxil fumarate (TDF) for HIV prevention. We determined the baseline prevalence of low bone mineral density (BMD) and the effect of TDF on BMD in men who have sex with men (MSM) in a PrEP trial in San Francisco.
We evaluated 1) the prevalence of low BMD using Dual Energy X-ray Absorptiometry (DEXA) in a baseline cohort of 210 HIV-uninfected MSM who screened for a randomized clinical trial of daily TDF vs. placebo, and 2) the effects of TDF on BMD in a longitudinal cohort of 184 enrolled men. Half began study drug after a 9-month delay to evaluate changes in risk behavior associated with pill-use. At baseline, 20 participants (10%) had low BMD (Z score≤-2.0 at the L2-L4 spine, total hip, or femoral neck). Low BMD was associated with amphetamine (OR = 5.86, 95% CI 1.70-20.20) and inhalant (OR = 4.57, 95% CI 1.32-15.81) use; men taking multivitamins, calcium, or vitamin D were less likely to have low BMD at baseline (OR = 0.26, 95% CI 0.10-0.71). In the longitudinal analysis, there was a 1.1% net decrease in mean BMD in the TDF vs. the pre-treatment/placebo group at the femoral neck (95% CI 0.4-1.9%), 0.8% net decline at the total hip (95% CI 0.3-1.3%), and 0.7% at the L2-L4 spine (95% CI -0.1-1.5%). At 24 months, 13% vs. 6% of participants experienced >5% BMD loss at the femoral neck in the TDF vs. placebo groups (p = 0.13).
Ten percent of HIV-negative MSM had low BMD at baseline. TDF use resulted in a small but statistically significant decline in BMD at the total hip and femoral neck. Larger studies with longer follow-up are needed to determine the trajectory of BMD changes and any association with clinical fractures.
ClinicalTrials.gov: NCT00131677.

Download full-text

Full-text

Available from: Kenneth Mayer, Jul 01, 2015
0 Followers
 · 
110 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plasmacytoid dendritic cells (pDCs) are innate immune cells that are specialized to produce interferon-alpha (IFNα) and participate in activating adaptive immune responses. Although IFNα inhibits HIV-1 (HIV) replication in vitro, pDCs may act as inflammatory and immunosuppressive dendritic cells (DCs) rather than classical antigen-presenting cells during chronic HIV infection in vivo, contributing more to HIV pathogenesis than to protection. Improved understanding of HIV-pDC interactions may yield potential new avenues of discovery to prevent HIV transmission, to blunt chronic immune activation and exhaustion, and to enhance beneficial adaptive immune responses. In this chapter we discuss pDC biology, including pDC development from progenitors, trafficking and localization of pDCs in the body, and signaling pathways involved in pDC activation. We focus on the role of pDCs in HIV transmission, chronic disease progression and immune activation, and immunosuppression through regulatory T cell development. Lastly, we discuss potential future directions for the field which are needed to strengthen our current understanding of the role of pDCs in HIV transmission and pathogenesis.
    Advances in Experimental Medicine and Biology 01/2013; 762:71-107. DOI:10.1007/978-1-4614-4433-6_3 · 2.01 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Those receiving tenofovir/emtricitabine (TDF-FTC) had greater bone loss compared with abacavir/lamivudine (ABC-3TC) in a randomized simplification trial (STEAL study). Previous studies associated increased bone turnover and bone loss with initiation of antiretroviral treatment, however it is unclear whether change in bone mineral density (BMD) was a result of specific drugs, from immune reconstitution or from suppression of HIV replication. This analysis determined predictors of BMD change in the hip and spine by dual-energy x-ray absorptiometry in virologically suppressed participants through week 96. Bone turnover markers (BTMS) tested were: formation [bone alkaline phosphatase, procollagen type 1 N-terminal propeptide (P1NP)]; resorption (C-terminal cross-linking telopeptide of type 1 collagen [CTx]); and bone cytokine-signalling (osteoprotegerin, RANK ligand). Independent predictors of BMD change were determined using forward, stepwise, linear regression. BTM changes and fracture risk (FRAX®) at week 96 were compared by t-test. Baseline characteristics (n = 301) were: 98% male, mean age 45 years, current protease-inhibitor (PI) 23%, tenofovir/abacavir-naïve 52%. Independent baseline predictors of greater hip and spine bone loss were TDF-FTC randomisation (p ≤ 0.013), lower fat mass (p-trend ≤ 0.009), lower P1NP (p = 0.015), and higher hip T score/spine BMD (p-trend ≤ 0.006). Baseline PI use was associated with greater spine bone loss (p = 0.004). TDF-FTC increased P1NP and CTx through Wk96 (p<0.01). Early changes in BTM did not predict bone loss at week 96. No significant between-group difference was found in fracture risk. Tenofovir/emtricitabine treatment, lower bone formation and lower fat mass predicted subsequent bone loss. There was no association between TDF-FTC and fracture risk.
    PLoS ONE 01/2012; 7(6):e38377. DOI:10.1371/journal.pone.0038377 · 3.53 Impact Factor