Facile Surface Functionalization with Glycosaminoglycans by Direct Coating with Mussel Adhesive Protein

Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Korea.
Tissue Engineering Part C Methods (Impact Factor: 4.64). 09/2011; 18(1):71-9. DOI: 10.1089/ten.TEC.2011.0384
Source: PubMed


The use of mussel adhesive proteins (MAPs) as a surface coating for cell adhesion has been suggested due to their unique properties of biocompatibility and effective adhesion on diverse inorganic and organic surfaces. The surface functionalization of scaffolds or implants using extracellular matrix (ECM) molecules is important for the enhancement of target cell behaviors such as proliferation and differentiation. In the present work, we suggest a new, simple surface functionalization platform based on the charge interactions between the positively charged MAP linker and negatively charged ECM molecules, such as glycosaminoglycans (GAGs). MAP was efficiently coated onto a titanium model surface using its adhesion ability. Then, several GAG molecules, including hyaluronic acid (HA), heparin sulfate (HS), chondroitin sulfate (CS), and dermatan sulfate (DS), were effectively immobilized on the MAP-coated surfaces by charge interactions. Using HA as a model GAG molecule, we found that the proliferation, spreading, and differentiation behaviors of mouse preosteoblast cells were all significantly improved on MAP/HA-layered titanium. In addition, we successfully constructed a multilayer film on a titanium surface with oppositely charged layer-by-layer coatings of MAP and HA. Collectively, our simple MAP-based surface functionalization strategy can be successfully used for the efficient surface immobilization of negatively charged ECM molecules in various tissue engineering and medical implantation applications.

15 Reads
  • Source
    • "Recently , we successfully and massively produced fp-151, a genetically redesigned hybrid MAP, using an Escherichia coli expression system and found that this hybrid MAP had significant adhesion ability [33]. In addition, the great potential of MAP derivatives as functional cell adhesion materials and simple surface modification tools for tissue engineering was realized through the exposure of ECM peptides and immobilization of various biomolecule types using fusion technology and peculiar MAP properties [34] [35] [36] [37] [38] [39]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Solid freeform fabrication (SFF) is recognized as a promising tool for creating tissue engineering scaffolds due to advantages such as superior interconnectivity and highly porous structure. Despite structural support for SFF-based three-dimensional (3-D) scaffolds that can lead to tissue regeneration, lack of cell recognition motifs and/or biochemical factors has been considered a limitation. Previously, recombinant mussel adhesive proteins (MAPs) were successfully demonstrated to be functional cell adhesion materials on various surfaces due to their peculiar adhesive properties. Herein, MAPs were applied as surface functionalization materials to SFF-based 3-D polycaprolactone/poly(lactic-co-glycolic acid) scaffolds. We successfully coated MAPs onto scaffold surfaces by simply dipping the scaffolds into the MAP solution, which was confirmed through X-ray photoelectron spectroscopy and scanning electron microscopy analyses. Through in vitro study using human adipose tissue-derived stem cells (hADSCs), significant enhancement of cellular activities such as attachment, proliferation, and osteogenic differentiation was observed on MAP-coated 3-D scaffolds, especially on which fused arginine-glycine-aspartic acid peptides were efficiently exposed. In addition, we found that in vivo hADSC implantation with MAP-coated scaffolds enhanced bone regeneration in a rat calvarial defect model. These results collectively demonstrate that facile surface functionalization of 3-D scaffolds using MAP would be a promising strategy for successful tissue engineering applications.
    Acta biomaterialia 04/2012; 8(7):2578-86. DOI:10.1016/j.actbio.2012.03.041 · 6.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To address the increasing need for improved tissue substitutes, tissue engineering seeks to create synthetic, three-dimensional scaffolds made from polymeric materials, incorporating cells and growth factors to induce new tissue formation. Materials science, in conjunction with biotechnology, can satisfy these needs by developing artificial, synthetic substitutes and organ implants. Here, scaffold ability to promote cell growth and differentiation is a key point and, in this framework, orthogonal chemistry has led the field of biomaterial science into a new area of selective, versatile and biocompatible nature. In particular, the possibility to modify and functionalize scaffolds with compounds that are able to improve mechanical properties or cell viability and improve their differentiation in a tailorable manner opens new opportunities for researchers. In this review, we seek to emphasize the recent endeavors of exploiting this versatile chemistry toward the development of new cell culture scaffolds.
    Tissue Engineering Part A 11/2013; 20(15-16). DOI:10.1089/ten.tea.2013.0367 · 4.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Silk has recently been exploited in various fields due to its superior mechanical properties. However, this material's lack of biological functions and relatively poor biodegradation have hindered its wide use in applications related to cells and tissues. Here, we improved the overall characteristics of silkworm silk fibroin (SF) by introduction of RGD peptide-fused recombinant mussel adhesive protein (MAP-RGD). Simple blending of MAP-RGD provided not only bulk-scale adhesive ability but also micro-scale adhesiveness to cells and various biomolecules. MAP-RGD-blended SF fibers supported enhanced adhesion, proliferation, and spreading of mammalian cells as well as the efficient attachment of biomolecules, including carbohydrate and protein. In addition, the hydrophilicity, swelling, and biodegradability of the MAP-RGD-blended SF material were improved, without notable hampering of the original mechanical properties of SF. Therefore, the adhesive silk fibrous scaffold could be successfully used in diverse biomedical engineering applications.
    Biomacromolecules 03/2014; 15(4). DOI:10.1021/bm500001n · 5.75 Impact Factor
Show more