Article

Signalling pathways of insulin-like growth factors (IGFs) and IGF binding protein-3.

Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St Leonards, Australia.
Growth factors (Chur, Switzerland) (Impact Factor: 3.09). 09/2011; 29(6):235-44. DOI: 10.3109/08977194.2011.614237
Source: PubMed

ABSTRACT Although the insulin-like growth factor (IGF) system is essential for normal growth and development, its dysregulation has been implicated in a range of pathological states. The peptide growth factors IGF-I and IGF-II exert their effects by binding to cell-surface heterotetrameric tyrosine kinase receptors and activating multiple intracellular signalling cascades, leading to changes in the expression of proteins essential for cell proliferation, survival and differentiation. The IGF system comprises multiple ligands, receptors and high-affinity IGF binding proteins (IGFBPs), with added complexity arising from crosstalk between its receptors and other key growth-regulatory pathways such as those activated by steroid hormones, integrins and other receptor tyrosine kinases. The IGFBPs are also increasingly recognised for their intrinsic growth-regulatory activity, and the ability of IGFBP-3 to modulate signalling pathways of nuclear hormone and growth factor receptors, as well as novel receptors, is believed to play a role both in normal physiology and in disease.

0 Followers
 · 
171 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Insulin-like growth factor I (IGF-I) is implicated in breast cancer development and 1, 25-dihydroxyvitamin D3 (1, 25-D3) has been shown to attenuate prosurvival effects of IGF-I on breast cancer cells. In this study the role of IGF binding protein-3 (IGFBP-3) in 1, 25-D3-induced apoptosis was investigated using parental MCF-7 breast cancer cells and MCF-7/VD(R) cells, which are resistant to the growth inhibitory effects of 1, 25-D3. Treatment with 1, 25-D3 increased IGFBP-3 mRNA expression in both cell lines but increases in intracellular IGFBP-3 protein and its secretion were observed only in MCF-7. 1, 25-D3-induced apoptosis was not associated with activation of any caspase but PARP-1 cleavage was detected in parental cells. IGFBP-3 treatment alone produced cleavage of caspases 7, 8, and 9 and PARP-1 in MCF-7 cells. IGFBP-3 failed to activate caspases in MCF-7/VD(R) cells; however PARP-1 cleavage was detected. 1, 25-D3 treatment inhibited IGF-I/Akt survival signalling in MCF-7 but not in MCF-7/VD(R) cells. In contrast, IGFBP-3 treatment was effective in inhibiting IGF-I/Akt pathways in both breast cancer lines. These results suggest a role for IGFBP-3 in 1, 25-D3 apoptotic signalling and that impaired secretion of IGFBP-3 may be involved in acquired resistance to vitamin D in breast cancer.
    International Journal of Cell Biology 04/2013; 2013:960378. DOI:10.1155/2013/960378
  • [Show abstract] [Hide abstract]
    ABSTRACT: Insulin-like growth factors (IGFs) play an integral role in development, growth, and survival. This article details the current understanding of the effects of IGFs in the peripheral nervous system (PNS) during health and disease, and introduces how the IGF system regulates PNS development and impacts growth and survival of PNS cells. Also discussed are implications of IGF signaling in neurodegeneration and the status and prospects of IGF therapies for PNS conditions. There is substantial support for the application of IGF therapies in the treatment of PNS injury and disease.
    Endocrinology and metabolism clinics of North America 06/2012; 41(2):375-93, vii. DOI:10.1016/j.ecl.2012.04.020 · 2.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Retinal endothelial cells line the arborizing microvasculature that supplies and drains the neural retina. The anatomical and physiological characteristics of these endothelial cells are consistent with nutritional requirements and protection of a tissue critical to vision. On the one hand, the endothelium must ensure the supply of oxygen and other nutrients to the metabolically active retina, and allow access to circulating cells that maintain the vasculature or survey the retina for the presence of potential pathogens. On the other hand, the endothelium contributes to the blood-retinal barrier that protects the retina by excluding circulating molecular toxins, microorganisms, and pro-inflammatory leukocytes. Features required to fulfill these functions may also predispose to disease processes, such as retinal vascular leakage and neovascularization, and trafficking of microbes and inflammatory cells. Thus, the retinal endothelial cell is a key participant in retinal ischemic vasculopathies that include diabetic retinopathy and retinopathy of prematurity, and retinal inflammation or infection, as occurs in posterior uveitis. Using gene expression and proteomic profiling, it has been possible to explore the molecular phenotype of the human retinal endothelial cell and contribute to understanding of the pathogenesis of these diseases. In addition to providing support for the involvement of well-characterized endothelial molecules, profiling has the power to identify new players in retinal pathologies. Findings may have implications for the design of new biological therapies. Additional progress in this field is anticipated as other technologies, including epigenetic profiling methods, whole transcriptome shotgun sequencing, and metabolomics, are used to study the human retinal endothelial cell.
    Progress in Retinal and Eye Research 09/2012; DOI:10.1016/j.preteyeres.2012.08.004 · 9.90 Impact Factor