Penetration of Anti-Infective Agents into Pulmonary Epithelial Lining Fluid

University of Illinois at Chicago, USA.
Clinical Pharmacokinetics (Impact Factor: 5.05). 10/2011; 50(10):637-64. DOI: 10.2165/11594090-000000000-00000
Source: PubMed

ABSTRACT The exposure-response relationship of anti-infective agents at the site of infection is currently being re-examined. Epithelial lining fluid (ELF) has been suggested as the site (compartment) of antimicrobial activity against lung infections caused by extracellular pathogens. There have been an extensive number of studies conducted during the past 20 years to determine drug penetration into ELF and to compare plasma and ELF concentrations of anti-infective agents. The majority of these studies estimated ELF drug concentrations by the method of urea dilution and involved either healthy adult subjects or patients undergoing diagnostic bronchoscopy. Antibacterial agents such as macrolides, ketolides, newer fluoroquinolones and oxazolidinones have ELF to plasma concentration ratios of >1. In comparison, β-lactams, aminoglycosides and glycopeptides have ELF to plasma concentration ratios of ≤1. Potential explanations (e.g. drug transporters, overestimation of the ELF volume, lysis of cells) for why these differences in ELF penetration occur among antibacterial classes need further investigation. The relationship between ELF concentrations and clinical outcomes has been under-studied. In vitro pharmacodynamic models, using simulated ELF and plasma concentrations, have been used to examine the eradication rates of resistant and susceptible pathogens and to explain why selected anti-infective agents (e.g. those with ELF to plasma concentration ratios of >1) are less likely to be associated with clinical treatment failures. Population pharmacokinetic modelling and Monte Carlo simulations have recently been used and permit ELF and plasma concentrations to be evaluated with regard to achievement of target attainment rates. These mathematical modelling techniques have also allowed further examination of drug doses and differences in the time courses of ELF and plasma concentrations as potential explanations for clinical and microbiological effects seen in clinical trials. Further studies are warranted in patients with lower respiratory tract infections to confirm and explore the relationships between ELF concentrations, clinical and microbiological outcomes, and pharmacodynamic parameters.

27 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Epithelial lining fluid (ELF) is often considered to be the site of extracellular pulmonary infections. During the past 25 years, a limited number of studies have evaluated the intrapulmonary penetration of antifungal, antitubercular, antiparasitic and antiviral agents. For antifungal agents, differences in drug concentrations in ELF or bronchoalveolar lavage (BAL) fluid were observed among various formulations or routes of administration, and between agents within the same class. Aerosolized doses of deoxycholate amphotericin B, liposomal amphotericin B and amphotericin B lipid complex resulted in higher concentrations in ELF or BAL fluid than after intravenous administration. The mean concentrations in ELF following intravenous administration of both anidulafungin and micafungin ranged between 0.04 and 1.38 μg/mL, and the ELF to plasma concentration ratios (based on the area under the concentration-time curve for total drug concentrations) were between 0.18 and 0.22 during the first 3 days of therapy. Among the azole agents, intravenous administration of voriconazole resulted in the highest mean ELF concentrations (range 10.1-48.3 μg/mL) and ratio of penetration (7.1). The range of mean ELF concentrations of itraconazole and posaconazole following oral administration was 0.2-1.9 μg/mL, and the ELF to plasma concentration ratios were <1. A series of studies have evaluated the intrapulmonary penetration of first- and second-line oral antitubercular agents in healthy adult subjects and patients with AIDS. The ELF to plasma concentration ratio was >1 for isoniazid, ethambutol, pyrazinamide and ethionamide. For rifampicin (rifampin) and rifapentine, the ELF to plasma concentration ratio ranged between 0.2 and 0.32, but in alveolar macrophages the concentration of rifampicin was much higher (145-738 μg/mL compared with 3.3-7.5 μg/mL in ELF). No intrapulmonary studies have been conducted for rifabutin. Sex, AIDS status or smoking history had no significant effects on the magnitude of ELF concentrations of antitubercular agents. Subjects who were slow acetylators had higher plasma and ELF concentrations of isoniazid than those who were fast acetylators. Penetration of dapsone into ELF was very good, with the range of mean ELF to plasma concentration ratios being 0.65-2.91 at individual sampling times over 48 hours. Once-daily dosing of aerosolized pentamidine resulted in higher concentrations in BAL fluid than after intravenous administration. The mean BAL concentrations at 15-32 days after once- or twice-monthly administration of aerosolized pentamidine 300 and 600 mg ranged from 6.5 to 28.4 ng/mL. No differences in pentamidine BAL concentrations were observed in symptomatic patients who developed Pneumocystis jirovecii pneumonia compared with patients who did not. Zanamivir concentrations in ELF were similar in magnitude (range 141-326 ng/mL) following administration by continuous intravenous infusion (3 mg/hour), oral inhalation (10 mg every 12 hours) and intravenous bolus (200 mg every 12 hours). Data from case reports have suggested that concentrations of nelfinavir and saquinavir in ELF are undetectable, whereas tipranavir and lopinavir had measureable ELF concentrations (2.20 μmol/L and 14.4 μg/mL, respectively) when these protease inhibitors were co-administrated with ritonavir. While the clinical significance of ELF or BAL concentrations remains unknown for this group of anti-infective agents, the knowledge of drug penetration into the extracellular space of the lung should assist in re-evaluating and designing specific dosing regimens for use against potential pathogens.
    Clinical Pharmacokinetics 11/2011; 50(11):689-704. DOI:10.2165/11592900-000000000-00000 · 5.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Appropriate antibiotic exposure at the site of infection is important for clinically effective therapy. This study compared the epithelial lining fluid (ELF) penetration of ceftolozane/tazobactam, which has potent in vitro activity against many Gram-negative pathogens causing nosocomial pneumonia, with that of piperacillin/tazobactam in healthy adult volunteers. In this Phase 1, open-label trial, 51 healthy adult subjects were randomized to receive three doses of either ceftolozane/tazobactam 1.5 g administered every 8 h via a 60 min infusion or piperacillin/tazobactam 4.5 g administered every 6 h via a 30 min infusion. Serial blood samples were obtained for determination of plasma drug concentrations. Bronchoscopy and bronchoalveolar lavage were performed at pre-specified timepoints in five subjects per timepoint in each treatment group to determine the ELF drug concentration. The penetration of individual analytes into the ELF was determined from the ratio of the area under the plasma concentration-time curve in ELF to that in plasma (AUC(ELF)/AUC(plasma)). Plasma and ELF concentrations of ceftolozane, piperacillin and tazobactam increased rapidly, reaching maximal concentrations at the end of the infusion. Mean maximum concentration and AUC from time 0 to the end of the dosing interval (AUC(0-τ)) for ceftolozane in ELF were 21.8 mg/L and 75.1 mg·h/L, respectively. Corresponding values for piperacillin were 58.8 mg/L and 94.5 mg·h/L. The ELF/plasma AUC ratio for ceftolozane was 0.48 compared with 0.26 for piperacillin. This study demonstrated that ceftolozane penetrated well into the ELF following parenteral administration of ceftolozane/tazobactam.
    Journal of Antimicrobial Chemotherapy 07/2012; 67(10):2463-9. DOI:10.1093/jac/dks246 · 5.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The steady-state concentrations of solithromycin in plasma were compared with concomitant concentrations in epithelial lining fluid (ELF) and alveolar macrophages (AM) obtained from intrapulmonary samples during bronchoscopy and bronchoalveolar lavage (BAL) in 30 healthy adult subjects. Subjects received oral solithromycin at 400 mg once daily for five consecutive days. Bronchoscopy and BAL were carried out once in each subject at either 3, 6, 9, 12, or 24 h after the last administered dose of solithromycin. Drug concentrations in plasma, ELF, and AM were assayed by a high-performance liquid chromatography-tandem mass spectrometry method. Solithromycin was concentrated extensively in ELF (range of mean [± standard deviation] concentrations, 1.02 ± 0.83 to 7.58 ± 6.69 mg/liter) and AM (25.9 ± 20.3 to 101.7 ± 52.6 mg/liter) in comparison with simultaneous plasma concentrations (0.086 ± 0.070 to 0.730 ± 0.692 mg/liter). The values for the area under the concentration-time curve from 0 to 24 h (AUC(0-24) values) based on mean and median ELF concentrations were 80.3 and 63.2 mg · h/liter, respectively. The ratio of ELF to plasma concentrations based on the mean and median AUC(0-24) values were 10.3 and 10.0, respectively. The AUC(0-24) values based on mean and median concentrations in AM were 1,498 and 1,282 mg · h/L, respectively. The ratio of AM to plasma concentrations based on the mean and median AUC(0-24) values were 193 and 202, respectively. Once-daily oral dosing of solithromycin at 400 mg produced steady-state concentrations that were significantly (P < 0.05) higher in ELF (2.4 to 28.6 times) and AM (44 to 515 times) than simultaneous plasma concentrations throughout the 24-h period after 5 days of solithromycin administration.
    Antimicrobial Agents and Chemotherapy 07/2012; 56(10):5076-81. DOI:10.1128/AAC.00766-12 · 4.48 Impact Factor
Show more