The Physical Basis of FGFR3 Response to fgf1 and fgf2

Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.
Biochemistry (Impact Factor: 3.19). 09/2011; 50(40):8576-82. DOI: 10.1021/bi200986f
Source: PubMed

ABSTRACT Fibroblast growth factors (fgfs) play important roles in embryonic development and in adult life by controlling cell proliferation, differentiation, and migration. There are 18 known fgfs which activate four fibroblast growth factor receptors (FGFRs), with different isoforms due to alternative splicing. The physical basis behind the specificity of the biological responses mediated by different fgf-FGFR pairs is currently unknown. To gain insight into the specificity of FGFR3c, a membrane receptor which is critical for bone development, we studied, analyzed, and compared the activation of FGFR3c over a wide range of fgf1 and fgf2 concentrations. We found that while the strength of fgf2 binding to FGFR3c is lower than the strength of fgf1 binding, the fgf2-bound dimers exhibit higher phosphorylation of the critical tyrosines in the activation loop. As a result, fgf1 and fgf2 elicit a similar FGFR3c response at low, but not at high, concentrations. The results demonstrate the versatility of FGFR3c response to fgf1 and fgf2 and highlight the complexity in fgf signaling.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Isolated receptor tyrosine kinase transmembrane (TM) domains have been shown to form sequence-specific dimers in membranes. Yet, it is not clear whether studies of isolated TM domains yield knowledge that is relevant to full-length receptors or whether the large glycosylated extracellular domains alter the interactions between the TM helices. Here, we address this question by quantifying the effect of the pathogenic A391E TM domain mutation on the stability of the fibroblast growth factor receptor 3 dimer in the presence of the extracellular domain and comparing these results to the case of the isolated TM fibroblast growth factor receptor 3 domains. We perform the measurements in plasma membrane-derived vesicles using a Förster-resonance-energy-transfer-based method. The effect of the mutation on dimer stability in both cases is the same (∼-1.5 kcal/mol), suggesting that the interactions observed in simple TM-peptide model systems are relevant in a biological context.
    Biophysical Journal 07/2013; 105(1):165-71. DOI:10.1016/j.bpj.2013.05.053 · 3.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The A391E mutation in fibroblast growth factor receptor 3 (FGFR3) is the genetic cause for Crouzon syndrome with Acanthosis Nigricans. Here we investigate the effect of this mutation on FGFR3 activation in HEK 293 T cells over a wide range of fibroblast growth factor 1 concentrations using a physical-chemical approach that deconvolutes the effects of the mutation on dimerization, ligand binding, and efficiency of phosphorylation. It is believed that the mutation increases FGFR3 dimerization, and our results verify this. However, our results also demonstrate that the increase in dimerization is not the sole effect of the mutation, as the mutation also facilitates the phosphorylation of critical tyrosines in the activation loop of FGFR3. The activation of mutant FGFR3 is substantially increased due to a combination of these two effects. The low expression of the mutant, however, attenuates its signaling and may explain the mild phenotype in Crouzon syndrome with Acanthosis Nigricans. The results presented here provide new knowledge about the physical basis behind growth disorders and highlight the fact that a single RTK mutation may affect multiple steps in RTK activation.
    PLoS ONE 02/2013; 8(2):e56521. DOI:10.1371/journal.pone.0056521 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Differentiation of astrocytes from human stem cells has significant potential for analysis of their role in normal brain function and disease, but existing protocols generate only immature astrocytes. Using early neuralization, we generated spinal cord astrocytes from mouse or human embryonic or induced pluripotent stem cells with high efficiency. Remarkably, short exposure to fibroblast growth factor 1 (FGF1) or FGF2 was sufficient to direct these astrocytes selectively toward a mature quiescent phenotype, as judged by both marker expression and functional analysis. In contrast, tumor necrosis factor alpha and interleukin-1β, but not FGFs, induced multiple elements of a reactive inflammatory phenotype but did not affect maturation. These phenotypically defined, scalable populations of spinal cord astrocytes will be important both for studying normal astrocyte function and for modeling human pathological processes in vitro.
    Cell Reports 08/2013; DOI:10.1016/j.celrep.2013.06.021 · 7.21 Impact Factor


Available from