Dengue-2 and yellow fever 17DD viruses infect human dendritic cells, resulting in an induction of activation markers, cytokines and chemokines and secretion of different TNF-α and IFN-α profiles

Laboratório de Imunologia Viral, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brasil.
Memórias do Instituto Oswaldo Cruz (Impact Factor: 1.57). 08/2011; 106(5):594-605. DOI: 10.1590/S0074-02762011000500012
Source: PubMed

ABSTRACT Flaviviruses cause severe acute febrile and haemorrhagic infections, including dengue and yellow fever and the pathogenesis of these infections is caused by an exacerbated immune response. Dendritic cells (DCs) are targets for dengue virus (DENV) and yellow fever virus (YF) replication and are the first cell population to interact with these viruses during a natural infection, which leads to an induction of protective immunity in humans. We studied the infectivity of DENV2 (strain 16681), a YF vaccine (YF17DD) and a chimeric YF17D/DENV2 vaccine in monocyte-derived DCs in vitro with regard to cell maturation, activation and cytokine production. Higher viral antigen positive cell frequencies were observed for DENV2 when compared with both vaccine viruses. Flavivirus-infected cultures exhibited dendritic cell activation and maturation molecules. CD38 expression on DCs was enhanced for both DENV2 and YF17DD, whereas OX40L expression was decreased as compared to mock-stimulated cells, suggesting that a T helper 1 profile is favoured. Tumor necrosis factor (TNF)-α production in cell cultures was significantly higher in DENV2-infected cultures than in cultures infected with YF17DD or YF17D/DENV. In contrast, the vaccines induced higher IFN-α levels than DENV2. The differential cytokine production indicates that DENV2 results in TNF induction, which discriminates it from vaccine viruses that preferentially stimulate interferon expression. These differential response profiles may influence the pathogenic infection outcome.

Download full-text


Available from: Marcos da Silva Freire, Jul 19, 2014
  • Source
    • "DENV infection induces the expression and secretion of proinflammatory cytokines in a RIG-I-dependent pathway DENV infection induces the production of IFNs and proinflammatory cytokines by different cell types, including some endothelial cells (Avirutnan et al., 1998; Lin et al., 2002; Talavera et al., 2004; Conceic -~ ao et al., 2010a, b; Gandini et al., 2011). Therefore, we investigated whether HBMECs infection would also result in cellular activation and cytokine secretion by analyzing the production of IFN-b, IL-6, IL-8, RANTES, IL-10 and TNF-a. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Dengue virus (DENV) infection is associated to exacerbated inflammatory response and structural and functional alterations in the vascular endothelium. However, the mechanisms underlying DENV-induced endothelial cell activation and their role in the inflammatory response were not investigated so far. We demonstrated that human brain microvascular endothelial cells (HBMECs) are susceptible to DENV infection, which induces the expression of the cytoplasmic pattern recognition receptor (PRR) RIG-I. Infection of HBMECs promoted an increase in the production of type I IFN and proinflammatory cytokines, which were abolished after RIG-I silencing. DENV-infected HBMECs also presented a higher ICAM-1 expression dependent on RIG-I activation as well. On the other hand, ablation of RIG-I did not interfere with virus replication. Our data suggest that RIG-I activation by DENV may participate in the disease pathogenesis through the modulation of cytokine release and expression of adhesion molecules, probably contributing to leukocyte recruitment and amplification of the inflammatory response.
    Virology 10/2012; 435(2). DOI:10.1016/j.virol.2012.09.038 · 3.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Little is known about the role of chemokines/chemokines receptors on T cells in natural DENV infection. Patients from DENV-2 and -3- outbreaks were studied prospectively during the acute or convalescent phases. Expression of chemokine receptor and activation markers on lymphocyte subpopulations were determined by flow cytometry analysis, plasma chemokine ligands concentrations were measured by ELISA and quantification of CCL5/RANTES(+) cells in liver tissues from fatal dengue cases was performed by immunochemistry. In the acute DENV-infection, T-helper/T-cytotoxic type-1 cell (Th1/Tc1)-related CCR5 is significantly higher expressed on both CD4 and CD8 T cells. The Th1-related CXCR3 is up-regulated among CD4 T cells and Tc2-related CCR4 is up-regulated among CD8 T cells. In the convalescent phase, all chemokine receptor or chemokine ligand expression tends to reestablish control healthy levels. Increased CCL2/MCP-1 and CCL4/MIP-1β but decreased CCL5/RANTES levels were observed in DENV-patients during acute infection. Moreover, we showed an increased CD107a expression on CCR5 or CXCR3-expressing T cells and higher expression of CD29, CD44(HIGH) and CD127(LOW) markers on CCR4-expressing CD8 T cells in DENV-patients when compared to controls. Finally, liver from dengue fatal patients showed increased number of cells expressing CCL5/RANTES in three out of four cases compared to three death from a non-dengue patient. In conclusion, both Th1-related CCR5 and CXCR3 among CD4 T cells have a potential ability to exert cytotoxicity function. Moreover, Tc1-related CCR5 and Tc2-related CCR4 among CD8 T cells have a potential ability to exert effector function and migration based on cell markers evaluated. The CCR5 expression would be promoting an enhanced T cell recruitment into liver, a hypothesis that is corroborated by the CCL5/RANTES increase detected in hepatic tissue from dengue fatal cases. The balance between protective and pathogenic immune response mediated by chemokines during dengue fever will be discussed.
    PLoS ONE 07/2012; 7(7):e38527. DOI:10.1371/journal.pone.0038527 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chemokines play a key role in initiating the innate and subsequently adaptive immune response by recruiting immune cells to the site of an infection. Monocytes/macrophages (MØ) are part of the first line of defence against invading pathogens, and have been shown to release a variety of chemokines in response to infection. Here, we reveal the early transcriptional response of MØ to infection with cytopathogenic (cp) and non-cytopathogenic (ncp) bovine viral diarrhoea strains (BVDV). We demonstrate up-regulation of several key chemokines of the CCL and CXCL families in MØ exposed to cpBVDV, but not ncpBVDV. In contrast, infection of MØ with ncpBVDV led to down-regulation of chemokine mRNA expression compared to uninfected cells. Data suggest that ncpBVDV can shut down production of several key chemokines that play crucial roles in the immune response to infection. This study helps to further our understanding of the pathogenesis of BVDV infection, highlighting biotype-specific cellular responses.
    Veterinary Immunology and Immunopathology 09/2012; 150(1-2):123-7. DOI:10.1016/j.vetimm.2012.08.009 · 1.75 Impact Factor
Show more