The effect of early trauma exposure on serotonin type 1B receptor expression revealed by reduced selective radioligand binding.

Mood and Anxiety Disorders Program, Department of Psychiatry, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, USA.
Archives of general psychiatry (Impact Factor: 13.75). 09/2011; 68(9):892-900. DOI: 10.1001/archgenpsychiatry.2011.91
Source: PubMed

ABSTRACT Serotonergic dysfunction is implicated in the pathogenesis of posttraumatic stress disorder (PTSD), and recent animal models suggest that disturbances in serotonin type 1B receptor function, in particular, may contribute to chronic anxiety. However, the specific role of the serotonin type 1B receptor has not been studied in patients with PTSD.
To investigate in vivo serotonin type 1B receptor expression in individuals with PTSD, trauma-exposed control participants without PTSD (TC), and healthy (non-trauma-exposed) control participants (HC) using positron emission tomography and the recently developed serotonin type 1B receptor selective radiotracer [(11)C]P943.
Cross-sectional positron emission tomography study under resting conditions.
Academic and Veterans Affairs medical centers.
Ninety-six individuals in 3 study groups: PTSD (n = 49), TC (n = 20), and HC (n = 27). Main Outcome Measure Regional [(11)C]P943 binding potential (BP(ND)) values in an a priori-defined limbic corticostriatal circuit investigated using multivariate analysis of variance and multiple regression analysis.
A history of severe trauma exposure in the PTSD and TC groups was associated with marked reductions in [(11)C]P943 BP(ND) in the caudate, the amygdala, and the anterior cingulate cortex. Participant age at first trauma exposure was strongly associated with low [(11)C]P943 BP(ND). Developmentally earlier trauma exposure also was associated with greater PTSD symptom severity and major depression comorbidity.
These data suggest an enduring effect of trauma history on brain function and the phenotype of PTSD. The association of early age at first trauma and more pronounced neurobiological and behavioral alterations in PTSD suggests a developmental component in the cause of PTSD.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: [(11)C]P943 is a novel, highly selective 5-HT1B PET radioligand. The aim of this study was to determine the test-retest reliability of [(11)C]P943 using two different modeling methods and to perform a power analysis with each quantification technique. Seven healthy volunteers underwent two PET scans on the same day. Regions of interest (ROIs) were the amygdala, hippocampus, pallidum, putamen, insula, frontal, anterior cingulate, parietal, temporal and occipital cortices, and cerebellum. Two multilinear radioligand quantification techniques were used to estimate binding potential: MA1, using arterial input function data, and the second version of the multilinear reference tissue model analysis (MRTM2), using the cerebellum as the reference region. Between-scan percent variability and intraclass correlation coefficients (ICC) were used to assess test-retest reliability. We also performed power analyses to determine the method that would allow the least number of subjects using within-subject or between-subject study designs. A voxel-wise ICC analysis for MRTM2 BPND was performed for the whole brain and all the ROIs studied. Mean percent variability between two scans across regions ranged between 0.4 % and 12.4 % for MA1 BPND, 0.5 % and 11.5 % for MA1 BPP, 16.7 % and 28.3 % for MA1 BPF, and between 0.2 % and 5.4 % for MRTM2 BPND. The power analyses showed a greater number of subjects were required using MA1 BPF compared with other outcome measures for both within-subject and between-subject study designs. ICC values were the highest using MRTM2 BPND and the lowest with MA1 BPF in ten ROIs. Small regions and regions with low binding had lower ICC values than large regions and regions with high binding. Reliable measures of 5-HT1B receptor binding can be obtained using the novel PET radioligand [(11)C]P943. Quantification of 5-HT1B receptor binding with MRTM2 BPND and with MA1 BPP provided the least variability and optimal power for within-subject and between-subject designs.
    European journal of nuclear medicine and molecular imaging 11/2014; 42(3). DOI:10.1007/s00259-014-2958-5 · 5.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ketamine is a unique anesthetic reagent known to produce various psychotic symptoms. Ketamine has recently been reported to elicit a long-lasting antidepressant effect in patients with major depression. Although recent studies provide insight into the molecular mechanisms of the effects of ketamine, the antidepressant mechanism has not been fully elucidated. To understand the involvement of the brain serotonergic system in the actions of ketamine, we performed a positron emission tomography (PET) study on non-human primates. Four rhesus monkeys underwent PET studies with two serotonin (5-HT)-related PET radioligands, [(11)C]AZ10419369 and [(11)C]DASB, which are highly selective for the 5-HT1B receptor and serotonin transporter (SERT), respectively. Voxel-based analysis using standardized brain images revealed that ketamine administration significantly increased 5-HT1B receptor binding in the nucleus accumbens and ventral pallidum, whereas it significantly reduced SERT binding in these brain regions. Fenfluramine, a 5-HT releaser, significantly decreased 5-HT1B receptor binding, but no additional effect was observed when it was administered with ketamine. Furthermore, pretreatment with 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)quinoxaline (NBQX), a potent antagonist of the glutamate α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor, blocked the action of ketamine on the 5-HT1B receptor but not SERT binding. This indicates the involvement of AMPA receptor activation in ketamine-induced alterations of 5-HT1B receptor binding. Because NBQX is known to block the antidepressant effect of ketamine in rodents, alterations in the serotonergic neurotransmission, particularly upregulation of postsynaptic 5-HT1B receptors in the nucleus accumbens and ventral pallidum may be critically involved in the antidepressant action of ketamine.
    Translational Psychiatry 01/2014; 4(1):e342. DOI:10.1038/tp.2013.112 · 4.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Preclinical evidence implicates the serotonin receptor 5-hydroxytryptamine 1B (5-HT1B) in the effects of cocaine. This study explores 5-HT1B in humans by examining receptor availability in vivo in subjects whose primary addiction is cocaine dependence (CD) using positron emission tomography. Study participants included 14 medically healthy subjects with CD (mean age = 41 ± 6 years) who were compared with 14 age-matched healthy control subjects (mean age = 41 ± 8 years) with no past or current history of cocaine or other illicit substance abuse. Participants underwent magnetic resonance imaging followed by positron emission tomography with the highly selective 5-HT1B tracer, [(11)C]P943, for purposes of quantifying regional binding potential. Voxel-based morphometry and gray matter masking also were employed to control for potential partial volume effects. The [(11)C]P943 positron emission tomography imaging data in nine candidate regions (amygdala, anterior cingulate cortex, caudate, frontal cortex, hypothalamus, pallidum, putamen, thalamus, and ventral striatum) showed significant or nearly significant reductions of regional binding potential in subjects with CD in three regions: anterior cingulate (-16%, p < .01), hypothalamus (-16%, p = .03), and frontal cortex (-7%, p = .08). Voxel-based morphometry showed significant gray matter reductions in the frontal cortex of subjects with CD. After gray matter masking, statistically significant reductions in the [(11)C]P943 regional binding potential were either retained (anterior cingulate, -14%, p = .01; hypothalamus, -20%, p < .01) or achieved (frontal cortex, -14%, p < .01). Whole-brain voxel-wise parameter estimation confirmed these results. Secondary analyses were also significant in some regions for years of cocaine and daily tobacco use. The reductions found in this study suggest that 5-HT1B receptors may contribute to the etiology or expression of CD and potentially represent a target for medication development.
    Biological psychiatry 11/2013; 76(10). DOI:10.1016/j.biopsych.2013.11.022 · 9.47 Impact Factor

Full-text (2 Sources)

Available from
Jun 5, 2014