Integrated pathway-level analysis of transcriptomics and metabolomics data with IMPaLA

Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany.
Bioinformatics (Impact Factor: 4.62). 09/2011; 27(20):2917-8. DOI: 10.1093/bioinformatics/btr499
Source: PubMed

ABSTRACT Pathway-level analysis is a powerful approach enabling interpretation of post-genomic data at a higher level than that of individual biomolecules. Yet, it is currently hard to integrate more than one type of omics data in such an approach. Here, we present a web tool 'IMPaLA' for the joint pathway analysis of transcriptomics or proteomics and metabolomics data. It performs over-representation or enrichment analysis with user-specified lists of metabolites and genes using over 3000 pre-annotated pathways from 11 databases. As a result, pathways can be identified that may be disregulated on the transcriptional level, the metabolic level or both. Evidence of pathway disregulation is combined, allowing for the identification of additional pathways with changed activity that would not be highlighted when analysis is applied to any of the functional levels alone. The tool has been implemented both as an interactive website and as a web service to allow a programming interface.
The web interface of IMPaLA is available at A web services programming interface is provided at;;
Supplementary data are available at Bioinformatics online.


Available from: Atanas Kamburov, Jun 03, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this study was to contribute to the first comprehensive metabolomic characterization of the human sperm cell through the application of two untargeted platforms based on proton nuclear magnetic resonance ((1) H-NMR) spectroscopy and gas chromatography coupled to mass spectrometry (GC-MS). Using these two complementary strategies, we were able to identify a total of 69 metabolites, of which 42 were identified using NMR, 27 using GC-MS and 4 by both techniques. The identity of some of these metabolites was further confirmed by two-dimensional (1) H-(1) H homonuclear correlation spectroscopy (COSY) and (1) H-(13) C heteronuclear single-quantum correlation (HSQC) spectroscopy. Most of the metabolites identified are reported here for the first time in mature human spermatozoa. The relationship between the metabolites identified and the previously reported sperm proteome was also explored. Interestingly, overrepresented pathways included not only the metabolism of carbohydrates, but also of lipids and lipoproteins. Of note, a large number of the metabolites identified belonged to the amino acids, peptides and analogues super class. The identification of this initial set of metabolites represents an important first step to further study their function in male gamete physiology and to explore potential reasons for dysfunction in future studies. We also demonstrate that the application of NMR and MS provides complementary results, thus constituting a promising strategy towards the completion of the human sperm cell metabolome. © 2015 American Society of Andrology and European Academy of Andrology.
    Andrology 04/2015; DOI:10.1111/andr.12027 · 3.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metabolomics comprises the methods and techniques that are used to measure the small molecule composition of biofluids and tissues, and is actually one of the most rapidly evolving research fields. The determination of the metabolomic profile - the metabolome - has multiple applications in many biological sciences, including the developing of new diagnostic tools in medicine. Recent technological advances in nuclear magnetic resonance and mass spectrometry are significantly improving our capacity to obtain more data from each biological sample. Consequently, there is a need for fast and accurate statistical and bioinformatic tools that can deal with the complexity and volume of the data generated in metabolomic studies. In this review, we provide an update of the most commonly used analytical methods in metabolomics, starting from raw data processing and ending with pathway analysis and biomarker identification. Finally, the integration of metabolomic profiles with molecular data from other high-throughput biotechnologies is also reviewed.
    Frontiers in Bioengineering and Biotechnology 01/2015; 3:23. DOI:10.3389/fbioe.2015.00023
  • [Show abstract] [Hide abstract]
    ABSTRACT: Early diagnosis and life-long surveillance are clinically important to improve the long-term survival of bladder cancer patients. Currently, a noninvasive biomarker that is as sensitive and specific as cystoscopy in detecting bladder tumors is lacking. Metabonomics is a complementary approach for identifying perturbed metabolic pathways in bladder cancer. Significant progress has been made using modern metabonomic techniques to characterize and distinguish bladder cancer patients from control subjects, identify marker metabolites and shed insights on the disease biology and potential therapeutic targets. With its rapid development, metabonomics has the potential to impact the clinical management of bladder cancer patients in the future by revolutionizing the diagnosis and life-long surveillance strategies and stratifying patients for diagnostic, surgical and therapeutic clinical trials. In this review, introduction to metabonomics, typical metabonomic workflow and critical evaluation of metabonomic investigations in identifying biomarkers for the diagnosis of bladder cancer are presented.
    Journal of Proteome Research 11/2014; 14(2). DOI:10.1021/pr500966h · 5.00 Impact Factor