The ERM protein, Ezrin, regulates neutrophil transmigration by modulating the apical localization of MRP2 in response to the SipA effector protein during Salmonella Typhimurium infection

Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655, USA.
Cellular Microbiology (Impact Factor: 4.82). 09/2011; 13(12):2007-21. DOI: 10.1111/j.1462-5822.2011.01693.x
Source: PubMed

ABSTRACT In human disease induced by Salmonella enterica serovar Typhimurium (S. Typhimurium), transepithelial migration of neutrophils rapidly follows attachment of the bacteria to the epithelial apical membrane. We have previously shown that during S. Typhimurium infection the multidrug resistance-associated protein 2 (MRP2) is highly expressed at the apical surface of the intestinal epithelia, and that it functions as an efflux pump for the potent neutrophil chemoattractant hepoxilin A(3) . However, the molecular mechanisms regulating its apical localization during active states of inflammation remain unknown. Thus, our objective was to determine the mechanistic basis for the translocation of MRP2 to the apical surface of intestinal epithelial cells during S. Typhimurium infection. We show that suppression of ezrin, through either RNAi or truncation of the C-terminus, results not only in a decrease in S. Typhimurium-induced neutrophil transmigration but also significantly attenuates the apical membrane expression of MRP2 during Salmonella infection. In addition, we determined that S. Typhimurium induces the activation of ezrin via a PKC-α-dependent pathway and that ezrin activation is coupled to apical localization of MRP2. Based on these results we propose that activation of ezrin is required for the apical localization of MRP2 during S. Typhimurium infection.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The human intestinal epithelium consists of a single layer of epithelial cells that forms a barrier against food antigens and the resident microbiota within the lumen. This delicately balanced organ functions in a highly sophisticated manner to uphold the fidelity of the intestinal epithelium and to eliminate pathogenic microorganisms. On the luminal side, this barrier is fortified by a thick mucus layer, and on the serosal side exists the lamina propria containing a resident population of immune cells. Pathogens that are able to breach this barrier disrupt the healthy epithelial lining by interfering with the regulatory mechanisms that govern the normal balance of intestinal architecture and function. This disruption results in a coordinated innate immune response deployed to eliminate the intruder that includes the release of antimicrobial peptides, activation of pattern-recognition receptors, and recruitment of a variety of immune cells. In the case of Salmonella enterica serovar typhimurium (S. typhimurium) infection, induction of an inflammatory response has been linked to its virulence mechanism, the type III secretion system (T3SS). The T3SS secretes protein effectors that exploit the host's cell biology to facilitate bacterial entry and intracellular survival, and to modulate the host immune response. As the role of the intestinal epithelium in initiating an immune response has been increasingly realized, this review will highlight recent research that details progress made in understanding mechanisms underlying the mucosal inflammatory response to Salmonella infection, and how such inflammatory responses impact pathogenic fitness of this organism.
    Frontiers in Immunology 07/2014; 5:311. DOI:10.3389/fimmu.2014.00311
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dietary fiber intake is associated with lower incidence and mortality from disease, but the underlying mechanisms of these protective effects are unclear. We hypothesized that β2→1-fructan dietary fibers confer protection on intestinal epithelial cell barrier function via Toll-like receptor 2 (TLR2), and we studied whether β2→1-fructan chain-length differences affect this process. T84 human intestinal epithelial cell monolayers were incubated with 4 β2→1-fructan formulations of different chain-length compositions and were stimulated with the proinflammatory phorbol 12-myristate 13-acetate (PMA). Transepithelial electrical resistance (TEER) was analyzed by electric cell substrate impedance sensing (ECIS) as a measure for tight junction-mediated barrier function. To confirm TLR2 involvement in barrier modulation by β2→1-fructans, ECIS experiments were repeated using TLR2 blocking antibody. After preincubation of T84 cells with short-chain β2→1-fructans, the decrease in TEER as induced by PMA (62.3 ± 5.2%, P < 0.001) was strongly attenuated (15.2 ± 8.8%, P < 0.01). However, when PMA was applied first, no effect on recovery was observed during addition of the fructans. By blocking TLR2 on the T84 cells, the protective effect of short-chain β2→1-fructans was substantially inhibited. Stimulation of human embryonic kidney human TLR2 reporter cells with β2→1-fructans induced activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), confirming that β2→1-fructans are specific ligands for TLR2. To conclude, β2→1-fructans exert time-dependent and chain length-dependent protective effects on the T84 intestinal epithelial cell barrier mediated via TLR2. These results suggest that TLR2 located on intestinal epithelial cells could be a target of β2→1-fructan-mediated health effects.
    Journal of Nutrition 04/2014; 144(7). DOI:10.3945/jn.114.191643 · 4.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective. Increasing evidence indicates that the cytoskeletal protein ezrin may play a critical role in cell motility. This study aims to investigate the role of ezrin in regulating the migration and invasion of fibroblast-like synoviocytes (FLSs) from patients with RA.Methods. Synovial tissues were obtained from 12 patients with RA and 6 with OA, and then FLSs were separated from synovial tissues. The expression of ezrin and phosphorylated ezrin (p-ezrin) was examined by Western blotting or IF staining. A specific inhibitor of ezrin phosphorylation and small interference RNA-mediated ezrin knockdown were used to inhibit the phosphorylation of ezrin. Migration and invasion of FLSs in vitro were measured by the Boyden chamber assay.Results. Increased expression of p-ezrin protein was found in synovial tissue and FLSs in patients with RA compared with patients with OA. Stimulation with TNF-α and IL-1β increased ezrin phosphorylation in RA FLSs. Inhibition of p-ezrin protein by a specific inhibitor of phosphorylation of ezrin and small interfering RNA-mediated knockdown reduced in vitro migration and invasion, as well as actin stress fibre formation in RA FLS. Furthermore, rho kinase and p38 mitogen-activated protein kinase (MAPK) signal pathways were involved in the phosphorylation of ezrin and invasion of RA FLSs.Conclusion. Increased expression of p-ezrin may contribute to aberrant aggressive behaviours of RA FLSs, which are mediated by rho kinase and the p38 MAPK pathway. This suggests a novel strategy targeting phosphorylation of ezrin to prevent synovial invasiveness and joint destruction in RA.
    Rheumatology (Oxford, England) 03/2014; 53(7). DOI:10.1093/rheumatology/keu013 · 4.44 Impact Factor


Available from