Article

Oxidative properties of a nonheme Ni(II)(O2) complex: Reactivity patterns for C-H activation, aromatic hydroxylation and heteroatom oxidation.

Manchester Interdisciplinary Biocenter and School of Chemical Engineering and Analytical Science, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
Chemical Communications (Impact Factor: 6.38). 09/2011; 47(38):10674-6. DOI: 10.1039/c1cc13993b
Source: PubMed

ABSTRACT Density functional theory calculations on the reactivity of a Ni(II)-superoxo complex in C-H bond activation, aromatic hydroxylation and heteroatom oxidation reactions have been explored; the Ni(II)-superoxo complex is able to react with substrates with weak C-H bonds and PPh(3).

0 Bookmarks
 · 
159 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metalloenzymes activate dioxygen to carry out a variety of biological reactions, including the biotransformation of naturally occurring molecules, oxidative metabolism of xenobiotics, and oxidative phosphorylation. The dioxygen activation at the catalytic sites of the enzymes occurs through several steps, such as the binding of O(2) at a reduced metal center, the generation of metal-superoxo and -peroxo species, and the O-O bond cleavage of metal-hydroperoxo complexes to form high-valent metal-oxo oxidants. Because these mononuclear metal-dioxygen (M-O(2)) adducts are implicated as key intermediates in dioxygen activation reactions catalyzed by metalloenzymes, studies of the structural and spectroscopic properties and reactivities of synthetic biomimetic analogues of these species have aided our understanding of their biological chemistry. One particularly versatile class of biomimetic coordination complexes for studying dioxygen activation by metal complexes is M-O(2) complexes bearing the macrocyclic N-tetramethylated cyclam (TMC) ligand. This Account describes the synthesis, structural and spectroscopic characterization, and reactivity studies of M-O(2) complexes bearing tetraazamacrocyclic n-TMC ligands, where M ═ Cr, Mn, Fe, Co, and Ni and n = 12, 13, and 14, based on recent results from our laboratory. We have used various spectroscopic techniques, including resonance Raman and X-ray absorption spectroscopy, and density functional theory (DFT) calculations to characterize several novel metal-O(2) complexes. Notably, X-ray crystal structures had shown that these complexes are end-on metal-superoxo and side-on metal-peroxo species. The metal ions and the ring size of the macrocyclic TMC ligands control the geometric and electronic structures of the metal-O(2) complexes, resulting in the end-on metal-superoxo versus side-on metal-peroxo structures. Reactivity studies performed with the isolated metal-superoxo complexes reveal that they can conduct electrophilic reactions such as oxygen atom transfer and C-H bond activation of organic substrates. The metal-peroxo complexes are active oxidants in nucleophilic reactions, such as aldehyde deformylation. We also demonstrate a complete intermolecular O(2)-transfer from metal(III)-peroxo complexes to a Mn(II) complex. The results presented in this Account show the significance of metal ions and supporting ligands in tuning the geometric and electronic structures and reactivities of the metal-O(2) intermediates that are relevant in biology and in biomimetic reactions.
    Accounts of Chemical Research 05/2012; 45(8):1321-30. · 20.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Density functional theory (DFT) calculations are presented on biomimetic model complexes of cysteine dioxygenase and focus on the effect of axial and equatorial ligand placement. Recent studies by one of us [Y. M. Badiei, M. A. Siegler and D. P. Goldberg, J. Am. Chem. Soc. 2011, 133, 1274] gave evidence of a nonheme iron biomimetic model of cysteine dioxygenase using an i-propyl-bis(imino)pyridine, equatorial tridentate ligand. Addition of thiophenol, an anion - either chloride or triflate - and molecular oxygen, led to several possible stereoisomers of this cysteine dioxygenase biomimetic complex. Moreover, large differences in reactivity using chloride as compared to triflate as the binding anion were observed. Here we present a series of DFT calculations on the origin of these reactivity differences and show that it is caused by the preference of coordination site of anion versus thiophenol binding to the chemical system. Thus, stereochemical interactions of triflate and the bulky iso-propyl substituents of the ligand prevent binding of thiophenol in the trans position using triflate. By contrast, smaller anions, such as chloride, can bind in either cis or trans ligand positions and give isomers with similar stability. Our calculations help to explain the observance of thiophenol dioxygenation by this biomimetic system and gives details of the reactivity differences of ligated chloride versus triflate.
    Organic & Biomolecular Chemistry 06/2012; 10(28):5401-9. · 3.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Iron(IV)-oxo intermediates are involved in oxidations catalyzed by heme and nonheme iron enzymes, including the cytochromes P450. At the distal site of the heme in P450 Compound I (Fe(IV) -oxo bound to porphyrin radical), the oxo group is involved in several hydrogen-bonding interactions with the protein, but their role in catalysis is currently unknown. In this work, we investigate the effects of hydrogen bonding on the reactivity of high-valent metal-oxo moiety in a nonheme iron biomimetic model complex with trigonal bipyramidal symmetry that has three hydrogen-bond donors directed toward a metal(IV)-oxo group. We show these interactions lower the oxidative power of the oxidant in reactions with dehydroanthracene and cyclohexadiene dramatically as they decrease the strength of the OH bond (BDE(OH) ) in the resulting metal(III)-hydroxo complex. Furthermore, the distal hydrogen-bonding effects cause stereochemical repulsions with the approaching substrate and force a sideways attack rather than a more favorable attack from the top. The calculations, therefore, give important new insights into distal hydrogen bonding, and show that in biomimetic, and, by extension, enzymatic systems, the hydrogen bond may be important for proton-relay mechanisms involved in the formation of the metal-oxo intermediates, but the enzyme pays the price for this by reduced hydrogen atom abstraction ability of the intermediate. Indeed, in nonheme iron enzymes, where no proton relay takes place, there generally is no donating hydrogen bond to the iron(IV)-oxo moiety.
    Chemistry - A European Journal 01/2013; · 5.93 Impact Factor