Article

Alzheimer's risk variants in the clusterin gene are associated with alternative splicing

Department of Psychiatry, McKusick Nathans Institute of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
Translational Psychiatry (Impact Factor: 4.36). 07/2011; 1(7). DOI: 10.1038/tp.2011.17
Source: PubMed

ABSTRACT Genetic variation in CLU encoding clusterin has been associated with Alzheimer's disease (AD) through replicated genome-wide studies, but the underlying mechanisms remain unknown. Following earlier reports that tightly regulated CLU alternative transcripts have different functions, we tested CLU single nucleotide polymorphisms (SNPs) including those associated with AD for quantitative effects on individual alternative transcripts. In 190 temporal lobe samples without pathology we found that the risk allele of the AD associated SNP rs9331888 increases the relative abundance of transcript NM_203339 (P=4.3×10(-12)). Using an independent set of 115 AD and control samples, we replicated this result (p=0.0014) and further observed that multiple CLU transcripts are at higher levels in AD compared to controls. The AD SNP rs9331888 is located in the first exon of NM_203339 and therefore, it is a functional candidate for the observed effects. We tested this hypothesis by in vitro dual luciferase assays using SK-N-SH cells and mouse primary cortical neurons and found allelic effects on enhancer function, consistent with our results on post-mortem human brain. These results suggest a biological mechanism for the genetic association of CLU with AD risk and indicate that rs9331888 is one of the functional DNA variants underlying this association.

0 Followers
 · 
142 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Here, we review the genetic risk factors for late onset Alzheimer’s disease (AD) and their role in AD pathogenesis. Recent advances in our understanding of the human genome, namely technological advances in methods to analyze millions of polymorphisms in thousands of subjects, have revealed new genes associated with AD risk: ABCA7, BIN1, CASS4, CD33, CD2AP, CELF1, CLU, CR1, DSG2, EPHA1, FERMT2, HLA-DRB5-DBR1, INPP5D, MS4A, MEF2C, NME8, PICALM, PTK2B, SLC24H4-RIN3, SORL1, ZCWPW1. Emerging technologies to analyze the entire genome in large datasets have also revealed coding variants that increase AD risk: PLD3 and TREM2. We review the relationship between these AD risk genes and the cellular and neuropathological features of AD. Together, understanding the mechanisms underlying the association of these genes with risk for disease will provide the most meaningful targets for therapeutic development to-date.
    Biological Psychiatry 01/2014; 77(1). DOI:10.1016/j.biopsych.2014.05.006 · 9.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) represents the main form of dementia, and is a major public health problem. Despite intensive research efforts, current treatments have only marginal symptomatic benefits and there are no effective disease-modifying or preventive interventions. AD has a strong genetic component, so much research in AD has focused on identifying genetic causes and risk factors. This chapter will cover genetic discoveries in AD and their consequences in terms of improved knowledge regarding the disease and the identification of biomarkers and drug targets. First, we will discuss the study of the rare early-onset, autosomal dominant forms of AD that led to the discovery of mutations in three major genes, APP, PSEN1, and PSEN2. These discoveries have shaped our current understanding of the pathophysiology and natural history of AD as well as the development of therapeutic targets and the design of clinical trials. Then, we will explore linkage analysis and candidate gene approaches, which identified variants in Apolipoprotein E (APOE) as the major genetic risk factor for late-onset, "sporadic" forms of AD (LOAD), but failed to robustly identify other genetic risk factors, with the exception of variants in SORL1. The main focus of this chapter will be on recent genome-wide association studies that have successfully identified common genetic variations at over 20 loci associated with LOAD outside of the APOE locus. These loci are in or near-novel AD genes including BIN1, CR1, CLU, phosphatidylinositol-binding clathrin assembly protein (PICALM), CD33, EPHA1, MS4A4/MS4A6, ABCA7, CD2AP, SORL1, HLA-DRB5/DRB1, PTK2B, SLC24A4-RIN3, INPP5D, MEF2C, NME8, ZCWPW1, CELF1, FERMT2, CASS4, and TRIP4 and each has small effects on risk of AD (relative risks of 1.1-1.3). Finally, we will touch upon the ongoing effort to identify less frequent and rare variants through whole exome and whole genome sequencing. This effort has identified two novel genes, TREM2 and PLD3, and shown a role for APP in LOAD. The identification of these recently identified genes has implicated previously unsuspected biological pathways in the pathophysiology of AD.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neuroglobin (NGB) is a neuron-specific vertebrate globin shown to protect against hypoxia, ischemia, oxidative stress and the toxic effects of Amyloid-beta. Following on our and others' results highlighting the importance of NGB expression in disease, we searched for genetic determinants of its expression. We found that a microRNA expressed with the NGB transcript shows significant target enrichments in the angiogenesis pathway and the Alzheimer disease/presenilin pathway. Using reporter constructs we identified potential promoter/enhancer elements between the transcription start site and 1,142 bp upstream. Using 184 post-mortem temporal lobe samples we replicated the reported negative effect of age, and after genotyping tagging SNPs we found one (rs981471) showing a significant correlation with the gene's expression and another (rs8014408) showing an interaction with age, the rare C allele being correlated with higher expression and faster decline. The two SNPs are towards the 3' end of NGB within the same LD block, 52 Kb apart and modestly correlated (r (2) = 0.5). Next generation sequencing of the same 184 temporal lobe samples and 79 confirmed AD patients across the entire gene region (including >12 Kb on the 3' and 5' flank) revealed limited coding variation, suggesting purifying selection of NGB, but did not identify regulatory or disease associated rare variants. A dinucleotide repeat in intron 1 with extensive evidence of functionality showed interesting but inconclusive results, as it was not amenable to further molecular analysis.
    Neurogenetics 12/2013; DOI:10.1007/s10048-013-0388-3 · 2.66 Impact Factor

Full-text (2 Sources)

Download
27 Downloads
Available from
May 20, 2014

Similar Publications