Article

Math Fluency Is Etiologically Distinct From Untimed Math Performance, Decoding Fluency, and Untimed Reading Performance: Evidence From a Twin Study

Ohio State University, Columbus, OH 43210, USA.
Journal of learning disabilities (Impact Factor: 1.77). 09/2011; 45(4):371-81. DOI: 10.1177/0022219411407926
Source: PubMed

ABSTRACT The authors examined whether math fluency was independent from untimed math and from reading using 314 pairs of school-aged twins drawn from the Western Reserve Reading and Math Projects. Twins were assessed through a 90-min home visit at approximately age 10 and were reassessed in their homes approximately 1 year later. Results suggested that the shared environment and genetics influenced the covariance among math fluency, untimed math measures, and reading measures. However, roughly two thirds of the variance in math fluency was independent from untimed math measures and reading, including reading fluency. The majority of this independent variance was the result of genetic factors that were longitudinally stable across two measurement occasions. These results suggest that math fluency, although related to other math measures, may also be a genetically distinct dimension of mathematics performance.

1 Follower
 · 
110 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ability to map between non-symbolic numerical magnitudes and Arabic numerals has been put forward as a key factor in children's mathematical development. This mapping ability has been mainly examined indirectly by looking at children's performance on a symbolic magnitude comparison task. The present study investigated mapping in a more direct way by using a task in which children had to choose which of two choice quantities (Arabic digits or dot arrays) matched the target quantity (dot array or Arabic digit), thereby focusing on small quantities ranging from 1 to 9. We aimed to determine the development of mapping over time and its relation to mathematics achievement. Participants were 36 first graders (M = 6 years 8 months) and 46 third graders (M = 8 years 8 months) who all completed mapping tasks, symbolic and non-symbolic magnitude comparison tasks and standardized timed and untimed tests of mathematics achievement. Findings revealed that children are able to map between non-symbolic and symbolic representations and that this mapping ability develops over time. Moreover, we found that children's mapping ability is related to timed and untimed measures of mathematics achievement, over and above the variance accounted for by their numerical magnitude comparison skills.
    PLoS ONE 04/2014; 9(4):e93565. DOI:10.1371/journal.pone.0093565 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Working memory has been consistently associated with mathematics achievement, although the etiology of these relations remains poorly understood. The present study examined the genetic and environmental underpinnings of math story problem solving, timed calculation, and untimed calculation alongside working memory components in 12-year-old monozygotic (n = 105) and same-sex dizygotic (n = 143) twin pairs. Results indicated significant phenotypic correlation between each working memory component and all mathematics outcomes (r = 0.18–0.33). Additive genetic influences shared between the visuo-spatial sketchpad and mathematics achievement were significant, accounting for roughly 89% of the observed correlation. In addition, genetic covariance was found between the phonological loop and math story problem solving. In contrast, despite there being a significant observed relationship between phonological loop and timed and untimed calculations, there was no significant genetic or environmental covariance between the phonological loop and timed or untimed calculation skills. Further analyses indicated that genetic overlap between the visuo-spatial sketchpad and math story problem solving and math fluency was distinct from general genetic factors, whereas g, phonological loop, and mathematics shared generalist genes. Thus, although each working memory component was related to mathematics, the etiology of their relationships may be distinct.
    Intelligence 11/2014; 47:54–62. DOI:10.1016/j.intell.2014.09.001 · 2.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The focus of this study was to construct and validate twelve brief early numeracy assessment tasks that measure the skills and concepts identified as key to early mathematics development by the National Council of Teachers of Mathematics (2006) and the National Mathematics Advisory Panel (2008)-as well as critical developmental precursors to later mathematics skill by the Common Core State Standards (CCSS; 2010). Participants were 393 preschool children ages 3 to 5 years old. Measure development and validation occurred through three analytic phases designed to ensure that the measures were brief, reliable, and valid. These measures included: one-to-one counting, cardinality, counting subsets, subitizing, number comparison, set comparison, number order, numeral identification, set-to-numerals, story problems, number combinations, and verbal counting. Teachers have extensive demands on their time, yet, they are tasked with ensuring that all students' academic needs are met. To identify individual instructional needs and measure progress, they need to be able to efficiently assess children's numeracy skills. The measures developed in this study are not only reliable and valid, but also easy to use and can be utilized for measuring the effects of targeted instruction on individual numeracy skills.
    Early Education and Development 02/2015; 26(2):286-313. DOI:10.1080/10409289.2015.991084 · 0.84 Impact Factor