Article

Multivariate searchlight classification of structural magnetic resonance imaging in children and adolescents with autism.

Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Biological psychiatry (Impact Factor: 8.93). 09/2011; 70(9):833-41. DOI: 10.1016/j.biopsych.2011.07.014
Source: PubMed

ABSTRACT Autism spectrum disorders (ASD) are neurodevelopmental disorders with a prevalence of nearly 1:100. Structural imaging studies point to disruptions in multiple brain areas, yet the precise neuroanatomical nature of these disruptions remains unclear. Characterization of brain structural differences in children with ASD is critical for development of biomarkers that may eventually be used to improve diagnosis and monitor response to treatment.
We use voxel-based morphometry along with a novel multivariate pattern analysis approach and searchlight algorithm to classify structural magnetic resonance imaging data acquired from 24 children and adolescents with autism and 24 age-, gender-, and IQ-matched neurotypical participants.
Despite modest voxel-based morphometry differences, multivariate pattern analysis revealed that the groups could be distinguished with accuracies of approximately 90% based on gray matter in the posterior cingulate cortex, medial prefrontal cortex, and bilateral medial temporal lobes-regions within the default mode network. Abnormalities in the posterior cingulate cortex were associated with impaired Autism Diagnostic Interview communication scores. Gray matter in additional prefrontal, lateral temporal, and subcortical structures also discriminated between groups with accuracies between 81% and 90%. White matter in the inferior fronto-occipital and superior longitudinal fasciculi, and the genu and splenium of the corpus callosum, achieved up to 85% classification accuracy.
Multiple brain regions, including those belonging to the default mode network, exhibit aberrant structural organization in children with autism. Brain-based biomarkers derived from structural magnetic resonance imaging data may contribute to identification of the neuroanatomical basis of symptom heterogeneity and to the development of targeted early interventions.

0 Bookmarks
 · 
114 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autism spectrum disorders (ASD) are characterized by impairments in social communication and restrictive, repetitive behaviors. While behavioral symptoms are well-documented, investigations into the neurobiological underpinnings of ASD have not resulted in firm biomarkers. Variability in findings across structural neuroimaging studies has contributed to difficulty in reliably characterizing the brain morphology of individuals with ASD. These inconsistencies may also arise from the heterogeneity of ASD, and wider age-range of participants included in MRI studies and in previous meta-analyses. To address this, the current study used coordinate-based anatomical likelihood estimation (ALE) analysis of 21 voxel-based morphometry (VBM) studies examining high-functioning individuals with ASD, resulting in a meta-analysis of 1055 participants (506 ASD, and 549 typically developing individuals). Results consisted of grey, white, and global differences in cortical matter between the groups. Modeled anatomical maps consisting of concentration, thickness, and volume metrics of grey and white matter revealed clusters suggesting age-related decreases in grey and white matter in parietal and inferior temporal regions of the brain in ASD, and age-related increases in grey matter in frontal and anterior-temporal regions. White matter alterations included fiber tracts thought to play key roles in information processing and sensory integration. Many current theories of pathobiology ASD suggest that the brains of individuals with ASD may have less-functional long-range (anterior-to-posterior) connections. Our findings of decreased cortical matter in parietal–temporal and occipital regions, and thickening in frontal cortices in older adults with ASD may entail altered cortical anatomy, and neurodevelopmental adaptations.
    NeuroImage: Clinical. 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Comorbidity with anxiety disorder is a relatively common occurrence in major depressive disorder. However, the unique and shared neuroanatomical characteristics of depression and anxiety disorders have not been fully identified. The aim of this study was to identify gray matter abnormalities and their clinical correlates in depressive patients with and without anxiety disorders.We applied voxel-based morphometry and region-of-interest analyses of gray matter volume (GMV) in normal controls (NC group, n = 28), depressive patients without anxiety disorder (DP group, n = 18), and depressive patients with anxiety disorder (DPA group, n = 20). The correlations between regional GMV and clinical data were analyzed.The DP group showed decreased GMV in the left insula (INS) and left triangular part of the inferior frontal gyrus when compared to the NC group. The DPA group showed greater GMV in the midbrain, medial prefrontal cortex, and primary motor/somatosensory cortex when compared to the NC group. Moreover, the DPA group showed greater GMV than the DP group in the frontal, INS, and temporal lobes. Most gray matter anomalies were significantly correlated with depression severity or anxiety symptoms. These correlations were categorized into 4 trend models, of which 3 trend models (ie, Models I, II, and IV) revealed the direction of the correlation between regional GMV and depression severity to be the opposite of that between regional GMV and anxiety symptoms. Importantly, the left INS showed a trend Model I, which might be critically important for distinguishing depressive patients with and without anxiety disorder.Our findings of gray matter abnormalities, their correlations with clinical data, and the trend models showing opposite direction may reflect disorder-specific symptom characteristics and help explain the neurobiological differences between depression and anxiety disorder.
    Medicine 12/2014; 93(29):e345. · 4.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autism is a psychiatric/neurological condition in which alterations in social interaction (among other symptoms) are diagnosed by behavioral psychiatric methods. The main goal of this study was to determine how the neural representations and meanings of social concepts (such as to insult) are altered in autism. A second goal was to determine whether these alterations can serve as neurocognitive markers of autism. The approach is based on previous advances in fMRI analysis methods that permit (a) the identification of a concept, such as the thought of a physical object, from its fMRI pattern, and (b) the ability to assess the semantic content of a concept from its fMRI pattern. These factor analysis and machine learning methods were applied to the fMRI activation patterns of 17 adults with high-functioning autism and matched controls, scanned while thinking about 16 social interactions. One prominent neural representation factor that emerged (manifested mainly in posterior midline regions) was related to self-representation, but this factor was present only for the control participants, and was near-absent in the autism group. Moreover, machine learning algorithms classified individuals as autistic or control with 97% accuracy from their fMRI neurocognitive markers. The findings suggest that psychiatric alterations of thought can begin to be biologically understood by assessing the form and content of the altered thought's underlying brain activation patterns.
    PLoS ONE 12/2014; 9(12):e113879. · 3.53 Impact Factor

Full-text (2 Sources)

Download
29 Downloads
Available from
Jun 4, 2014