Impact of apolipoprotein E4-cerebrospinal fluid β-amyloid interaction on hippocampal volume loss over 1 year in mild cognitive impairment.

Department of Radiology, University of California, San Francisco, USA.
Alzheimer's & dementia: the journal of the Alzheimer's Association (Impact Factor: 17.47). 09/2011; 7(5):514-20. DOI: 10.1016/j.jalz.2010.12.010
Source: PubMed

ABSTRACT The majority of studies relating amyloid pathology with brain volumes have been cross-sectional. Apolipoprotein ɛ4 (APOE ɛ4), a genetic risk factor for Alzheimer's disease, is also known to be associated with hippocampal volume loss. No studies have considered the effects of amyloid pathology and APOE ɛ4 together on longitudinal volume loss.
We evaluated whether an abnormal level of cerebrospinal fluid beta-amyloid (CSF Aβ) and APOE ɛ4 carrier status were independently associated with greater hippocampal volume loss over 1 year. We then assessed whether APOE ɛ4 status and CSF Aβ acted synergistically, testing the significance of an interaction term in the regression analysis. We included 297 participants: 77 cognitively normal, 144 with mild cognitive impairment (MCI), and 76 with Alzheimer's disease.
An abnormal CSF Aβ level was found to be associated with greater hippocampal volume loss over 1 year in each group. APOE ɛ4 was associated with hippocampal volume loss only in the cognitively normal and MCI groups. APOE ɛ4 carriers with abnormal CSF Aβ in the MCI group acted synergistically to produce disproportionately greater volume loss than noncarriers.
Baseline CSF Aβ predicts progression of hippocampal volume loss. APOE ɛ4 carrier status amplifies the degree of neurodegeneration in MCI. Understanding the effect of interactions between genetic risk and amyloid pathology will be important in clinical trials and our understanding of the disease process.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Atrophy of the hippocampus and surrounding temporal regions occurs in Alzheimer's disease (AD). APOE ε4, the major genetic risk factor for late-onset AD, has been associated with smaller volume in these regions before amyloidosis can be detected by AD biomarkers. To examine APOE ε4 effects in relation to aging, we performed a longitudinal magnetic resonance imaging study involving cognitively normal adults (25 APOE ε4 carriers and 31 ε3 homozygotes), initially aged 51-75 years. We used growth curve analyses, which can provide information about APOE ε4-related differences initially and later in life. Hippocampal volume was the primary outcome; nearby medial temporal regions were secondary outcomes. Brain-derived neurotrophic factor, val66met was a secondary covariate. APOE ε4 carriers had significantly smaller initial hippocampal volumes than ε3 homozygotes. Rate of hippocampal atrophy was not greater in the APOE ε4 group, although age-related atrophy was detected in the overall sample. The findings add to the growing evidence that effects of APOE ε4 on hippocampal size begin early in life, underscoring the importance of early interventions to increase reserve.
    Neurobiology of Aging 05/2014; 35(11). DOI:10.1016/j.neurobiolaging.2014.05.011 · 4.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Apolipoprotein E (APOE) genotype is the strongest known genetic risk factor for sporadic Alzheimer's disease (AD), but the utility of plasma ApoE levels for assessing the severity of underlying neurodegenerative changes remains uncertain. Here, we examined cross-sectional associations between plasma ApoE levels and volumetric magnetic resonance imaging indices of the hippocampus from 541 participants [57 with normal cognition (NC), 375 with mild cognitive impairment (MCI), and 109 with mild AD] who were enrolled in the Alzheimer's Disease Neuroimaging Initiative. Across the NC and MCI groups, lower plasma ApoE levels were significantly correlated with smaller hippocampal size, as measured by either hippocampal volume or hippocampal radial distance. These associations were driven primarily by findings from carriers of an APOE ε4 allele and are consistent with prior reports that lower plasma ApoE levels correlate with greater global cortical Pittsburgh Compound B retention. In this high-risk group, plasma ApoE levels may represent a peripheral marker of underlying AD neuropathology in nondemented elderly individuals. © 2014 S. Karger AG, Basel.
    Dementia and Geriatric Cognitive Disorders 12/2014; 39(3-4):154-166. DOI:10.1159/000368982 · 2.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The hippocampus is one of the most age-sensitive brain regions, yet the mechanisms of hippocampal shrinkage remain unclear. Recent studies suggest that hippocampal subfields are differentially vulnerable to aging and differentially sensitive to vascular risk. Promoters of inflammation are frequently proposed as major contributors to brain aging and vascular disease but their effects on hippocampal subfields are unknown. We examined the associations of hippocampal subfield volumes with age, a vascular risk factor (hypertension), and genetic polymorphisms associated with variation in pro-inflammatory cytokines levels (IL-1β C-511T and IL-6 C-174G) and risk for Alzheimer's disease (APOEε4) in healthy adult volunteers (N = 80; age = 22-82 years). Volumes of three hippocampal subfields, cornu ammonis (CA) 1-2, CA3-dentate gyrus, and the subiculum were manually measured on high-resolution magnetic resonance images. Advanced age was differentially associated with smaller volume of CA1-2, whereas carriers of the T allele of IL-1β C-511T polymorphism had smaller volume of all hippocampal subfields than CC homozygotes did. Neither of the other genetic variants, nor diagnosis of hypertension, was associated with any of the measured volumes. The results support the notion that volumes of age-sensitive brain regions may be affected by pro-inflammatory factors that may be targeted by therapeutic interventions.
    Brain Structure and Function 06/2014; DOI:10.1007/s00429-014-0817-6 · 4.57 Impact Factor

Full-text (2 Sources)

Available from
Jun 6, 2014