Photoactivation switch from type II to type I reactions by electron-rich micelles for improved photodynamic therapy of cancer cells under hypoxia

Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, United States.
Journal of Controlled Release (Impact Factor: 7.26). 08/2011; 156(3):276-80. DOI: 10.1016/j.jconrel.2011.08.019
Source: PubMed

ABSTRACT Photodynamic therapy (PDT) is an emerging clinical modality for the treatment of a variety of diseases. Most photosensitizers are hydrophobic and poorly soluble in water. Many new nanoplatforms have been successfully established to improve the delivery efficiency of PS drugs. However, few reported studies have investigated how the carrier microenvironment may affect the photophysical properties of photosensitizer (PS) drugs and subsequently, their biological efficacy in killing malignant cells. In this study, we describe the modulation of type I and II photoactivation processes of the photosensitizer, 5,10,15,20-tetrakis(meso-hydroxyphenyl)porphyrin (mTHPP), by the micelle core environment. Electron-rich poly(2-(diisopropylamino)ethyl methacrylate) (PDPA) micelles increased photoactivations from type II to type I mechanisms, which significantly increased the generation of O(2)(-) through the electron transfer pathway over (1)O(2) production through energy transfer process. The PDPA micelles led to enhanced phototoxicity over the electron-deficient poly(D,L-lactide) control in multiple cancer cell lines under argon-saturated conditions. These data suggest that micelle carriers may not only improve the bioavailability of photosensitizer drugs, but also modulate photophysical properties for improved PDT efficacy.

Download full-text


Available from: Ying Dong, Jul 06, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 5-Aminolevulinic acid (ALA) is a photosensitizer used in photodynamic therapy (PDT) because it causes preferential accumulation of protoporphyrin IX (PpIX) in tumor cells, where it forms singlet oxygen upon light irradiation and kills the tumor cells. Our previous study demonstrated that PpIX enhances generation of reactive oxygen species by physicochemical interaction with X-rays. We investigated the effect of ALA administration with X-ray irradiation of mouse B16-BL6 melanoma cells in vitro and in vivo. ALA facilitates PpIX accumulation in tumor cells and enhances ROS generation in vitro. Tumor suppression significantly improved in animals treated with fractionated doses of radiation (3 Gy × 10; total, 30 Gy) with local administration of 50 mg/kg ALA at 24 h prior to fractional irradiation. These results suggest ALA may improve the efficacy of cancer radiotherapy by acting as a radiomediator.
    SpringerPlus 01/2013; 2:602. DOI:10.1186/2193-1801-2-602
  • [Show abstract] [Hide abstract]
    ABSTRACT: Non-small cell lung cancer (NSCLC) accounts for the majority of lung cancer caused human death. In this work, we selected oncogene mouse double minute 2 (MDM2) as a therapeutic target for NSCLC treatment and proposed that sufficient MDM2 knockdown could inhibit tumor growth via induction of cell cycle arrest and cancer cell apoptosis. On this regard, a new pH-responsive diblock copolymer of poly(methacryloyloxy ethyl phosphorylcholine)-block-poly(diisopropanolamine ethyl methacrylate) (PMPC-b-PDPA)/siRNA-MDM2 complex nanoparticle with minimized surface charge and suitable particle size was designed and developed for siRNA-MDM2 delivery in vitro and in vivo. The experimental results showed that the nanoparticles were spherical with particle size around 50 nm. MDM2 knockdown in p53 mutant NSCLC H2009 cells induced significant cell cycle arrest, apoptosis and growth inhibition through upregulation of p21 and activation of caspase-3. Furthermore, the growth of H2009 xenograft tumor in nude mice was inhibited via repeated injection of PMPC-b-PDPA/siRNA-MDM2 complex nanoparticles. These results suggested that PMPC-b-PDPA/siRNA complex nanoparticles targeting a unique set of oncogenes could be developed into a new therapeutic approach for NSCLC treatment.
    Biomaterials 01/2013; 34(11). DOI:10.1016/j.biomaterials.2012.12.042 · 8.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In order to improve the therapeutic effect of zinc phthalocyanines (ZnPc), a photoactive nanodrug was prepared with acetylated chondroitin sulfate (AcCS), utilizing a simple chemical method. AcCS/ZnPc nanodrugs have a unimodal size distribution below 200 nm and a negative surface charge due to AcCS located on the nanodrug surface. In organic solvent such as DMSO or DMF, it has strong fluorescence intensity and generates abundant singlet oxygen. However, in aqueous solvent, AcCS/ZnPc nanodrugs developed a self-organized form which induced reducing fluorescence intensity and singlet oxygen generation. The cellular uptake of the nanodrug was determined using a cell lysis test and confocal microscopy observation. The results indicated that cellular internalization efficiency of the nanodrug was 1.7–2.1 times higher than that of free ZnPc. Also, the phototoxicity of the nanodrug was detected via MTT assay with or without light. Although free ZnPc did not exhibit cytotoxicity in both light and dark condition, the nanodrug exhibited increasing cytotoxicity after irradiation. We therefore suggest that AcCS/ZnPc nanodrugs may have promising applications as new photodynamic agents for the clinical treatment of various tumors.
    Journal of Porphyrins and Phthalocyanines 02/2013; 17(01n02). DOI:10.1142/S1088424612501386 · 1.36 Impact Factor