Article

Structural and thermodynamic comparison of the catalytic domain of AMSH and AMSH-LP: nearly identical fold but different stability.

Brown Laboratory of Chemistry, Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
Journal of Molecular Biology (Impact Factor: 3.91). 08/2011; 413(2):416-29. DOI: 10.1016/j.jmb.2011.08.029
Source: PubMed

ABSTRACT AMSH plays a critical role in the ESCRT (endosomal sorting complexes required for transport) machinery, which facilitates the down-regulation and degradation of cell-surface receptors. It displays a high level of specificity toward cleavage of Lys63-linked polyubiquitin chains, the structural basis of which has been understood recently through the crystal structure of a highly related, but ESCRT-independent, protein AMSH-LP (AMSH-like protein). We have determined the X-ray structure of two constructs representing the catalytic domain of AMSH: AMSH244, the JAMM (JAB1/MPN/MOV34)-domain-containing polypeptide segment from residues 244 to 424, and AMSH219(E280A), an active-site mutant, Glu280 to Ala, of the segment from 219 to 424. In addition to confirming the expected zinc coordination in the protein, the structures reveal that the catalytic domains of AMSH and AMSH-LP are nearly identical; however, guanidine-hydrochloride-induced unfolding studies show that the catalytic domain of AMSH is thermodynamically less stable than that of AMSH-LP, indicating that the former is perhaps structurally more plastic. Much to our surprise, in the AMSH219(E280A) structure, the catalytic zinc was still held in place, by the compensatory effect of an aspartate from a nearby loop moving into a position where it could coordinate with the zinc, once again suggesting the plasticity of AMSH. Additionally, a model of AMSH244 bound to Lys63-linked diubiquitin reveals a type of interface for the distal ubiquitin significantly different from that seen in AMSH-LP. Altogether, we believe that our data provide important insight into the structural difference between the two proteins that may translate into the difference in their biological function.

0 Bookmarks
 · 
74 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The COP9 signalosome (CSN) is a multiprotein complex containing eight subunits and is highly conserved from fungi to human. CSN is proposed to widely participate in many physiological processes, including protein degradation, DNA damage response and signal transduction. Among those subunits, only CSN5 and CSN6 belong to JAMM family. CSN5 possesses isopeptidase activity, but CSN6 lacks this ability. Here we report the 2.5Å crystal structure of MPN domain from Drosophila melanogaster CSN6. Structural comparison with other MPN domains, along with bioinformation analysis, suggests that MPN domain from CSN6 may serve as a scaffold instead of a metalloprotease.
    FEBS letters 04/2012; 586(8):1147-53. · 3.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Deubiquitinases (DUBs) play an important role in regulating the ubiquitin landscape of proteins. The DUB AMSH (Associated Molecule with the SH3 domain of STAM) has been shown to be involved in regulating the ubiquitin-dependent downregulation of activated cell surface receptors via the endo-lysosomal degradative pathway. Therefore small molecule AMSH inhibitors will be useful chemical probes to study the effect of AMSH DUB activity on cell surface receptor degradation. Currently there are no known selective inhibitors of AMSH or high-throughput compatible assays for their identification. We report the development and optimization of a novel FRET based add-and-read AMSH deubiquitinase assay in a 384-well format. In this format, the optimal temperature for a high throughput screen (HTS) was determined to be 30°C, the assay tolerates 5% DMSO and has a Z-score of 0.71 indicating HTS compatibility. The assay was used to show that AMSH selectively cleaves Lys63-linked diubiquitin over Lys48- and Lys11-linked diubiquitin. The IC50 value of the non-specific small molecule DUB inhibitor N-ethylmaleimide was 16.2 ± 3.2 μ M and can be used as a qualitative positive control for the screen. We conclude that this assay is HTS compatible and can be used to identify novel small molecule inhibitors of AMSH.
    Analytical Biochemistry 06/2013; · 2.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ubiquitination mediates endocytosis and endosomal sorting of various signaling receptors, transporters, and channels. However, the relative importance of mono- versus polyubiquitination and the role of specific types of polyubiquitin linkages in endocytic trafficking remain controversial. We used mass spectrometry-based targeted proteomics to show that activated epidermal growth factor receptor (EGFR) is ubiquitinated by one to two short (two to three ubiquitins) polyubiquitin chains mainly linked via lysine 63 (K63) or conjugated with a single monoubiquitin. Multimonoubiquitinated EGFR species were not found. To directly test whether K63 polyubiquitination is necessary for endocytosis and post-endocytic sorting of EGFR, a chimeric protein, in which the K63 linkage-specific deubiquitination enzyme AMSH [associated molecule with the Src homology 3 domain of signal transducing adaptor molecule (STAM)] was fused to the carboxyl terminus of EGFR, was generated. MS analysis of EGFR-AMSH ubiquitination demonstrated that the fraction of K63 linkages was substantially reduced, whereas relative amounts of monoubiquitin and K48 linkages increased, compared with that of wild-type EGFR. EGFR-AMSH was efficiently internalized into early endosomes, but, importantly, the rates of ligand-induced sorting to late endosomes and degradation of EGFR-AMSH were dramatically decreased. The slow degradation of EGFR-AMSH resulted in the sustained signaling activity of this chimeric receptor. Ubiquitination patterns, rate of endosomal sorting, and signaling kinetics of EGFR fused with the catalytically inactive mutant of AMSH were reversed to normal. Altogether, the data are consistent with the model whereby short K63-linked polyubiquitin chains but not multimonoubiquitin provide an increased avidity for EGFR interactions with ubiquitin adaptors, thus allowing rapid sorting of activated EGFR to the lysosomal degradation pathway.
    Proceedings of the National Academy of Sciences 09/2013; · 9.81 Impact Factor

Full-text

View
0 Downloads
Available from