The Natural Cytotoxicity Receptor 1 Contribution to Early Clearance of Streptococcus pneumoniae and to Natural Killer-Macrophage Cross Talk

The Shraga Segal Department of Microbiology and Immunology and the National Institute for Biotechnology in the Negev, Ben Gurion University of the Negev, Beer Sheva, Israel.
PLoS ONE (Impact Factor: 3.53). 08/2011; 6(8):e23472. DOI: 10.1371/journal.pone.0023472
Source: PubMed

ABSTRACT Natural killer (NK) cells serve as a crucial first line of defense against tumors, viral and bacterial infections. We studied the involvement of a principal activating natural killer cell receptor, natural cytotoxicity receptor 1 (NCR1), in the innate immune response to S. pneumoniae infection. Our results demonstrate that the presence of the NCR1 receptor is imperative for the early clearance of S. pneumoniae. We tied the ends in vivo by showing that deficiency in NCR1 resulted in reduced lung NK cell activation and lung IFNγ production at the early stages of S. pneumoniae infection. NCR1 did not mediate direct recognition of S. pneumoniae. Therefore, we studied the involvement of lung macrophages and dendritic cells (DC) as the mediators of NK-expressed NCR1 involvement in response to S. pneumoniae. In vitro, wild type BM-derived macrophages and DC expressed ligands to NCR1 and co-incubation of S. pneumoniae-infected macrophages/DC with NCR1-deficient NK cells resulted in significantly lesser IFNγ levels compared to NCR1-expressing NK cells. In vivo, ablation of lung macrophages and DC was detrimental to the early clearance of S. pneumoniae. NCR1-expressing mice had more potent alveolar macrophages as compared to NCR1-deficient mice. This result correlated with the higher fraction of NCR1-ligand(high) lung macrophages, in NCR1-expressing mice, that had better phagocytic activity compared to NCR1-ligand(dull) macrophages. Overall, our results point to the essential contribution of NK-expressed NCR1 in early response to S. pneumoniae infection and to NCR1-mediated interaction of NK and S. pneumoniae infected-macrophages and -DC.

Download full-text


Available from: Shirin Goldman, Jul 28, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The interaction between natural killer (NK) cells and different other immune cells like T cells and dendritic cells is well-described, but the crosstalk with monocytes or macrophages and the nature of ligands/receptors implicated are just emerging. The macrophage-NK interaction is a major first-line defense against pathogens (bacteria, viruses, fungi, and parasites). The recruitment and the activation of NK cells to perform cytotoxicity or produce cytokines at the sites of inflammation are important to fight infections. The two main mechanisms by which macrophages can prime NK cells are (1) activation through soluble mediators such as IL-12, IL-18, and (2) stimulation through direct cell-to-cell contact. We will discuss the progress in matters of modulation of NK cell functions by monocytes and macrophages, in the steady state and during diseases.
    Frontiers in Immunology 01/2012; 3:403. DOI:10.3389/fimmu.2012.00403
  • [Show abstract] [Hide abstract]
    ABSTRACT: Natural killer (NK) cells are a part of the innate immune system that functions mainly to kill transformed and infected cells. Their activity is controlled by signals derived from a panel of activating and inhibitory receptors. The natural cytotoxicity receptors (NCRs): NKp30, NKp44, and NKp46 (NCR1 in mice) are prominent among the activating NK cell receptors and they are, notably, the only NK-activating receptors that are able to recognize pathogen-derived ligands. In addition, the NCRs also recognize cellular ligands, the identity of which remains largely unknown. In this review, we summarize the current knowledge regarding viruses that are recognized by the NCRs, focusing on the diverse immune-evasion mechanisms employed by viruses to escape this detection. We also discuss the unique role the NCRs have in regulating NK cell activity with particular emphasis on the in vivo function of NKp46/NCR1.
    Cellular and Molecular Life Sciences CMLS 05/2012; DOI:10.1007/s00018-012-1001-x · 5.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Natural killer (NK) cells and their crosstalk with other immune cells are important for innate immunity against tumor. To explore the role of the interaction between NK cells and macrophages in the regulation of anti-tumor activities of NK cells, we here demonstrate that poly I:C-treated macrophages increased NK cell-mediated cytotoxicity against target tumor cells in NKG2D-dependent manner. In addition, IL-15, IL-18, and IFN-β secreted by poly I:C-treated macrophages are also involved in NKG2D expression and NK cell activation. Interestingly, the increase in expression of NKG2D ligands on macrophages induced a highly NK cell-mediated cytotoxicity against tumor cells, but not against macrophages themselves. Notably, a high expression level of Qa-1, a NKG2A ligand, on macrophages may contribute to such protection of macrophages from NK cell-mediated killing. Furthermore, Qa-1 or NKG2A knockdown and Qa-1 antibody blockade caused the macrophages to be sensitive to NK cytolysis. These results suggested that macrophages may activate NK cells to attack tumor by NKG2D recognition whereas macrophages protect themselves from NK lysis via preferential expression of Qa-1.
    PLoS ONE 05/2012; 7(5):e36928. DOI:10.1371/journal.pone.0036928 · 3.53 Impact Factor
Show more