Article

Iron Uptake Mediated by Binding of H-Ferritin to the TIM-2 Receptor in Mouse Cells

Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, United States of America.
PLoS ONE (Impact Factor: 3.23). 08/2011; 6(8):e23800. DOI: 10.1371/journal.pone.0023800
Source: PubMed

ABSTRACT Ferritin binds specifically and saturably to a variety of cell types, and recently several ferritin receptors have been cloned. TIM-2 is a specific receptor for H ferritin (HFt) in the mouse. TIM-2 is a member of the T cell immunoglobulin and mucin domain containing (TIM) protein family and plays an important role in immunity. The expression of TIM-2 outside of the immune system indicates that this receptor may have broader roles. We tested whether ferritin binding to TIM-2 can serve as an iron delivery mechanism. TIM-2 was transfected into normal (TCMK-1) mouse kidney cells, where it was appropriately expressed on the cell surface. HFt was labeled with (55)Fe and (55)Fe-HFt was incubated with TIM-2 positive cells or controls. (55)Fe-HFt uptake was observed only in TIM-2 positive cells. HFt uptake was also seen in A20 B cells, which express endogenous TIM-2. TIM-2 levels were not increased by iron chelation. Uptake of (55)Fe-HFt was specific and temperature-dependent. HFt taken up by TIM-2 positive cells transited through the endosome and eventually entered a lysosomal compartment, distinguishing the HFt pathway from that of transferrin, the classical vehicle for cellular iron delivery. Iron delivered following binding of HFt to TIM-2 entered the cytosol and became metabolically available, resulting in increased levels of endogenous intracellular ferritin. We conclude that TIM-2 can function as an iron uptake pathway.

Download full-text

Full-text

Available from: Wei Wang, Aug 27, 2015
0 Followers
 · 
167 Views
  • Source
    • "The uptake of H-ferritin results in an increase in the labile pool of iron within oligodendrocytes, which in turn causes a decrease in IRP/IRE binding and presumably decreased transferrin receptor expression, while the expression of the Hferritin receptor in rodents is thought to be independent of IRE/IRP control (Hulet et al. 2000). The receptor for H-ferritin on rat oligodendrocytes is T cell immunoglobulin and mucin domain-containing protein-2 (Tim-2) (Todorich et al. 2008), and indeed, no standard IRE was found for Tim-2 (Han et al. 2011). However, Tim-2 is not expressed in humans (Kuchroo et al. 2003). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Iron, an essential element used for a multitude of biochemical reactions, abnormally accumulates in the CNS of patients with multiple sclerosis (MS). The mechanisms of abnormal iron deposition in MS are not fully understood, nor do we know whether these deposits have adverse consequences, that is, contribute to pathogenesis. With some exceptions, excess levels of iron are represented concomitantly in multiple deep gray matter structures often with bilateral representation, whereas in white matter, pathological iron deposits are usually located at sites of inflammation that are associated with veins. These distinct spatial patterns suggest disparate mechanisms of iron accumulation between these regions. Iron has been postulated to promote disease activity in MS by various means: (i) iron can amplify the activated state of microglia resulting in the increased production of proinflammatory mediators; (ii) excess intracellular iron deposits could promote mitochondria dysfunction; and (iii) improperly managed iron could catalyze the production of damaging reactive oxygen species (ROS). The pathological consequences of abnormal iron deposits may be dependent on the affected brain region and/or accumulation process. Here, we review putative mechanisms of enhanced iron uptake in MS and address the likely roles of iron in the pathogenesis of this disease.
    Journal of Neurochemistry 01/2012; 120(1):7-25. DOI:10.1111/j.1471-4159.2011.07536.x · 4.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Iron plays an essential role in cellular metabolism and biological processes. However, due to its intrinsic redox activity, free iron is a potentially toxic molecule in cellular biochemistry. Thus, organisms have developed sophisticated ways to import, sequester, and utilize iron. The transferrin cycle is a well-studied iron uptake pathway that is important for most vertebrate cells. Circulating iron can also be imported into cells by mechanisms that are independent of transferrin. Once imported into erythroid cells, iron is predominantly consumed by the mitochondria for the biosynthesis of heme and iron sulfur clusters. This review focuses on canonical transferrin-mediated and the newly discovered, non-transferrin mediated iron uptake pathways, as well as, mitochondrial iron homeostasis in higher eukaryotes. This article is part of a Special Issue entitled: Cell Biology of Metals.
    Biochimica et Biophysica Acta 01/2012; 1823(9):1459-67. DOI:10.1016/j.bbamcr.2012.01.003 · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ferritin iron from food is readily bioavailable to humans and has the potential for treating iron deficiency. Whether ferritin iron absorption is mechanistically different from iron absorption from small iron complexes/salts remains controversial. Here, we studied iron absorption (RBC (59)Fe) from radiolabeled ferritin iron (0.5 mg) in healthy women with or without non-ferritin iron competitors, ferrous sulfate, or hemoglobin. A 9-fold excess of non-ferritin iron competitor had no significant effect on ferritin iron absorption. Larger amounts of iron (50 mg and a 99-fold excess of either competitor) inhibited iron absorption. To measure transport rates of iron that was absorbed inside ferritin, rat intestinal segments ex vivo were perfused with radiolabeled ferritin and compared to perfusion with ferric nitrilotriacetic (Fe-NTA), a well-studied form of chelated iron. Intestinal transport of iron absorbed inside exogenous ferritin was 14.8% of the rate measured for iron absorbed from chelated iron. In the steady state, endogenous enterocyte ferritin contained >90% of the iron absorbed from Fe-NTA or ferritin. We found that ferritin is a slow release source of iron, readily available to humans or animals, based on RBC iron incorporation. Ferritin iron is absorbed by a different mechanism than iron salts/chelates or heme iron. Recognition of a second, nonheme iron absorption process, ferritin endocytosis, emphasizes the need for more mechanistic studies on ferritin iron absorption and highlights the potential of ferritin present in foods such as legumes to contribute to solutions for global iron deficiency.
    Journal of Nutrition 03/2012; 142(3):478-83. DOI:10.3945/jn.111.145854 · 4.23 Impact Factor
Show more