Article

Thermobifida fusca exoglucanase Cel6B is incompatible with the cellulosomal mode in contrast to endoglucanase Cel6A.

Systems and Synthetic Biology 09/2010; 4(3):193-201. DOI: 10.1007/s11693-010-9056-1
Source: PubMed

ABSTRACT Cellulosomes are efficient cellulose-degradation systems produced by selected anaerobic bacteria. This multi-enzyme complex is assembled from a group of cellulases attached to a protein scaffold termed scaffoldin, mediated by a high-affinity protein-protein interaction between the enzyme-borne dockerin module and the cohesin module of the scaffoldin. The enzymatic complex is attached as a whole to the cellulosic substrate via a cellulose-binding module (CBM) on the scaffoldin subunit. In previous works, we have employed a synthetic biology approach to convert several of the free cellulases of the aerobic bacterium, Thermobifida fusca, into the cellulosomal mode by replacing each of the enzymes' CBM with a dockerin. Here we show that although family six enzymes are not a part of any known cellulosomal system, the two family six enzymes of the T. fusca system (endoglucanase Cel6A and exoglucanase Cel6B) can be converted to work as cellulosomal enzymes. Indeed, the chimaeric dockerin-containing family six endoglucanase worked well as a cellulosomal enzyme, and proved to be more efficient than the parent enzyme when present in designer cellulosomes. In stark contrast, the chimaeric family six exoglucanase was markedly less efficient than the wild-type enzyme when mixed with other T. fusca cellulases, thus indicating its incompatibility with the cellulosomal mode of action.

Full-text

Available from: David Wilson, Jun 02, 2015
0 Followers
 · 
146 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: We here describe a unique β-D-glucosidase (BGL; Blon_0625) derived from Bifidobacterium longum subsp. infantis ATCC 15697. The Blon_0625 gene was expressed by recombinant Escherichia coli. Purified recombinant Blon_0625 retains hydrolyzing activity against both p-nitrophenyl-β-D-glucopyranoside (pNPG; 17.3 ± 0.24 U mg−1) and p-nitrophenyl-β-D-xylopyranoside (pNPX; 16.7 ± 0.32 U mg−1) at pH 6.0, 30˚C. To best of our knowledge, no previously described BGL retains the same level of both pNPGase and pNPXase activity. Furthermore, Blon_0625 also retains the activity against 4-nitrophenyl-α-l-arabinofranoside (pNPAf; 5.6 ± 0.09 U mg−1). In addition, the results of the degradation of phosphoric acid swollen cellulose (PASC) or xylan using endoglucanase from Thermobifida fusca YX (Tfu_0901) or xylanase from Kitasatospora setae KM-6054 (KSE_59480) show that Blon_0625 acts as a BGL and as a β-D-xylosidase (XYL) for hydrolyzing oligosaccharides. These results clearly indicate that Blon_0625 is a multi-functional glycoside hydrolase which retains the activity of BGL, XYL, and also α-l-arabinofuranosidase. Therefore, the utilization of multi-functional Blon_0625 may contribute to facilitating the efficient degradation of lignocellulosic materials and help enhance bioconversion processes.
    Enzyme and Microbial Technology 01/2014; DOI:10.1016/j.enzmictec.2014.10.001 · 2.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Second generation biofuel development is increasingly reliant on the recombinant expression of cellulases. Designing or identifying successful expression systems is thus of preeminent importance to industrial progress in the field. Recombinant production of cellulases has been performed using a wide range of expression systems in bacteria, yeasts and plants. In a number of these systems, particularly when using bacteria and plants, significant challenges have been experienced in expressing full-length proteins or proteins at high yield. Further difficulties have been encountered in designing recombinant systems for surface-display of cellulases and for use in consolidated bioprocessing in bacteria and yeast. For establishing cellulase expression in plants, various strategies are utilized to overcome problems, such as the auto-hydrolysis of developing plant cell walls. In this review, we investigate the major challenges, as well as the major advances made to date in the recombinant expression of cellula
    Biotechnology for Biofuels 01/2014; 7(1):135. DOI:10.1186/s13068-014-0135-5 · 6.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lactobacillus plantarum is an attractive candidate for metabolic engineering towards bioprocessing of lignocellulosic biomass to ethanol or polylactic acid, as its natural characteristics include high ethanol and acid tolerance and the ability to metabolize the two major polysaccharide constituents of lignocellulolytic biomass (pentoses and hexoses). We recently engineered L. plantarum via separate introduction of a potent cellulase and xylanase, thereby creating two different L. plantarum strains. We used these strains as a combined cell-consortium for synergistic degradation of cellulosic biomass. To optimize enzymatic degradation, we applied the cell-consortium approach to assess the significance of enzyme localization by comparing three enzymatic paradigms prevalent in nature: (i) a secreted enzymes system, (ii) enzymes anchored to the bacterial cell surface and (iii) enzymes integrated into cellulosome complexes. The construction of the three paradigmatic systems involved the division of the production and organization of the enzymes and scaffold proteins into different strains of L. plantarum. The spatial differentiation of the components of the enzymatic systems alleviated the load on the cell machinery of the different bacterial strains. Active designer cellulosomes containing a xylanase and a cellulase were thus assembled on L. plantarum cells by co-culturing three distinct engineered strains of the bacterium: two helper strains for enzyme secretion and one producing only the anchored scaffoldin. Alternatively, the two enzymes were anchored separately to the cell wall. The secreted enzyme consortium appeared to have a slight advantage over the designer cellulosome system in degrading the hypochlorite pretreated wheat straw substrate, and both exhibited significantly higher levels of activity compared to the anchored enzyme consortium. However, the secreted enzymes appeared to be less stable than the enzymes integrated into designer cellulosomes, suggesting an advantage of the latter over longer time periods. By developing the potential of L. plantarum to express lignocellulolytic enzymes and to control their functional combination and stoichiometry on the cell wall, this study provides a step forward towards optimal biomass bioprocessing and soluble fermentable sugar production. Future expansion of the preferred secreted-enzyme and designer-cellulosome systems to include additional types of enzymes will promote enhanced deconstruction of cellulosic feedstocks.
    Biotechnology for Biofuels 07/2014; 7(1):112. DOI:10.1186/1754-6834-7-112 · 6.22 Impact Factor