Article

Thermobifida exoglucanase Cel6B is incompatible with the cellulosomal mode in contrast to endoglucanase Cel6A

Systems and Synthetic Biology 09/2010; 4(3):193-201. DOI: 10.1007/s11693-010-9056-1
Source: PubMed

ABSTRACT Cellulosomes are efficient cellulose-degradation systems produced by selected anaerobic bacteria. This multi-enzyme complex is assembled from a group of cellulases attached to a protein scaffold termed scaffoldin, mediated by a high-affinity protein-protein interaction between the enzyme-borne dockerin module and the cohesin module of the scaffoldin. The enzymatic complex is attached as a whole to the cellulosic substrate via a cellulose-binding module (CBM) on the scaffoldin subunit. In previous works, we have employed a synthetic biology approach to convert several of the free cellulases of the aerobic bacterium, Thermobifida fusca, into the cellulosomal mode by replacing each of the enzymes' CBM with a dockerin. Here we show that although family six enzymes are not a part of any known cellulosomal system, the two family six enzymes of the T. fusca system (endoglucanase Cel6A and exoglucanase Cel6B) can be converted to work as cellulosomal enzymes. Indeed, the chimaeric dockerin-containing family six endoglucanase worked well as a cellulosomal enzyme, and proved to be more efficient than the parent enzyme when present in designer cellulosomes. In stark contrast, the chimaeric family six exoglucanase was markedly less efficient than the wild-type enzyme when mixed with other T. fusca cellulases, thus indicating its incompatibility with the cellulosomal mode of action.

Download full-text

Full-text

Available from: David Wilson, Aug 26, 2015
0 Followers
 · 
162 Views
  • Source
    • "The CBM2s of endocellulase Cel6A and exocellulase Cel6B were replaced with dockerins from C. cellulolyticum and C. thermocellum, producing chimeras 6A-c and t-6B. In general, activity was reduced on most substrates; however, surprisingly, t-6B showed about 14-fold higher activity on amorphous cellulose than the native enzyme (Caspi et al., 2006, 2008, 2011). Designer cellulosome harboring cellulases and xylanases was designed using T. fusca endoxylanases Xyn10B and Xyn11A and T. fusca cellulases, Cel48A exoglucanase and Cel5A endoglucanase. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract The process of bioethanol production from biomass comprises pretreatments and enzyme-mediated hydrolysis to convert lignocellulose into fermentable sugars. Because of the recalcitrant character of cellulose, the enzymatic hydrolysis is considered the major challenge in this process to be economically competitive. These technical difficulties highlight the need for the discovery of new enzymes to optimize and lower the cost of current technologies. Microorganisms have developed efficient systems for cellulose degradation. Among cellulolytic microbes, Thermobifida fusca possesses great physiological and cellulolytic characteristics (thermostability, high activity and tolerance to a broad pH range) making it an interesting organism to be studied from an applied perspective. In this review we describe the main enzymes/proteins produced by T.fusca (cellulases, xylanases, mannanase, manosidase, CBM33 and CelR), the effect of substrate on T. fusca proteome, enzyme improvement approaches, synergism between enzymes/proteins and artificial cellulosomes.
    Critical Reviews in Microbiology 03/2013; 40(3). DOI:10.3109/1040841X.2013.776512 · 6.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Designer cellulosomes are precision-engineered multienzyme complexes in which the molecular architecture and enzyme content are exquisitely controlled. This system was used to examine enzyme cooperation for improved synergy among Thermobifida fusca glycoside hydrolases. Two T. fusca cellulases, Cel48A exoglucanase and Cel5A endoglucanase, and two T. fusca xylanases, endoxylanases Xyn10B and Xyn11A, were selected as enzymatic components of a mixed cellulase/xylanase-containing designer cellulosome. The resultant mixed multienzyme complex was fabricated on a single scaffoldin subunit bearing all four enzymes. Conversion of T. fusca enzymes to the cellulosomal mode followed by their subsequent incorporation into a tetravalent cellulosome led to assemblies with enhanced activity (~2.4-fold) on wheat straw as a complex cellulosic substrate. The enhanced synergy was caused by the proximity of the enzymes on the complex compared to the free-enzyme systems. The hydrolytic properties of the tetravalent designer cellulosome were compared with the combined action of two separate divalent cellulase- and xylanase-containing cellulosomes. Significantly, the tetravalent designer cellulosome system exhibited an ~2-fold enhancement in enzymatic activity compared to the activity of the mixture of two distinct divalent scaffoldin-borne enzymes. These results provide additional evidence that close proximity between cellulases and xylanases is key to the observed concerted degradation of the complex cellulosic substrate in which the integrated enzymes complement each other by promoting access to the relevant polysaccharide components of the substrate. The data demonstrate that cooperation among xylanases and cellulases can be augmented by their integration into a single designer cellulosome.
    mBio 10/2010; 1(5). DOI:10.1128/mBio.00285-10 · 6.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In nature, the complex composition and structure of the plant cell wall pose a barrier to enzymatic degradation. Nevertheless, some anaerobic bacteria have evolved for this purpose an intriguing, highly efficient multienzyme complex, the cellulosome, which contains numerous cellulases and hemicellulases. The rod-like cellulose component of the plant cell wall is embedded in a colloidal blend of hemicelluloses, a major component of which is xylan. In order to enhance enzymatic degradation of the xylan component of a natural complex substrate (wheat straw) and to study the synergistic action among different xylanases, we have employed a variation of the designer cellulosome approach by fabricating a tetravalent complex that includes the three endoxylanases of Thermobifida fusca (Xyn10A, Xyn10B, and Xyn11A) and an Xyl43A β-xylosidase from the same bacterium. Here, we describe the conversion of Xyn10A and Xyl43A to the cellulosomal mode. The incorporation of the Xyl43A enzyme together with the three endoxylanases into a common designer cellulosome served to enhance the level of reducing sugars produced during wheat straw degradation. The enhanced synergistic action of the four xylanases reflected their immediate juxtaposition in the complex, and these tetravalent xylanolytic designer cellulosomes succeeded in degrading significant (~25%) levels of the total xylan component of the wheat straw substrate. The results suggest that the incorporation of xylanases into cellulosome complexes is advantageous for efficient decomposition of recalcitrant cellulosic substrates—a distinction previously reserved for cellulose-degrading enzymes.
    mBio 10/2011; 2(6). DOI:10.1128/mBio.00233-11 · 6.88 Impact Factor
Show more