Article

Effects of sleep apnea on nocturnal free fatty acids in subjects with heart failure

Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.
Sleep (Impact Factor: 5.06). 05/2011; 34(9):1207-13. DOI: 10.5665/SLEEP.1240
Source: PubMed

ABSTRACT Sleep apnea is common in patients with congestive heart failure, and may contribute to the progression of underlying heart disease. Cardiovascular and metabolic complications of sleep apnea have been attributed to intermittent hypoxia. Elevated free fatty acids (FFA) are also associated with the progression of metabolic, vascular, and cardiac dysfunction. The objective of this study was to determine the effect of intermittent hypoxia on FFA levels during sleep in patients with heart failure.
During sleep, frequent blood samples were examined for FFA in patients with stable heart failure (ejection fraction < 40%). In patients with severe sleep apnea (apnea-hypopnea index = 65.5 ± 9.1 events/h; average low SpO₂ = 88.9%), FFA levels were compared to controls with milder sleep apnea (apnea-hypopnea index = 15.4 ± 3.7 events/h; average low SpO₂ = 93.6%). In patients with severe sleep apnea, supplemental oxygen at 2-4 liters/min was administered on a subsequent night to eliminate hypoxemia.
Prior to sleep onset, controls and patients with severe apnea exhibited a similar FFA level. After sleep onset, patients with severe sleep apnea exhibited a marked and rapid increase in FFA relative to control subjects. This increase persisted throughout NREM and REM sleep exceeding serum FFA levels in control subjects by 0.134 mmol/L (P = 0.0038). Supplemental oxygen normalized the FFA profile without affecting sleep architecture or respiratory arousal frequency.
In patients with heart failure, severe sleep apnea causes surges in nocturnal FFA that may contribute to the accelerated progression of underlying heart disease. Supplemental oxygen prevents the FFA elevation.

Download full-text

Full-text

Available from: Jonathan C Jun, Jan 02, 2014
0 Followers
 · 
134 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Obesity causes insulin resistance (IR) and nonalcoholic fatty liver disease (NAFLD), but the relative contribution of sleep apnea is debatable. The main aim of this study is to evaluate the effects of chronic intermittent hypoxia (CIH), a hallmark of sleep apnea, on IR and NAFLD in lean mice and mice with diet-induced obesity (DIO). Mice (C57BL/6J), 6-8 weeks of age were fed a high fat (n = 18) or regular (n = 16) diet for 12 weeks and then exposed to CIH or control conditions (room air) for 4 weeks. At the end of the exposure, fasting (5 h) blood glucose, insulin, homeostasis model assessment (HOMA) index, liver enzymes, and intraperitoneal glucose tolerance test (1 g/kg) were measured. In DIO mice, body weight remained stable during CIH and did not differ from control conditions. Lean mice under CIH were significantly lighter than control mice by day 28 (P = 0.002). Compared to lean mice, DIO mice had higher fasting levels of blood glucose, plasma insulin, the HOMA index, and had glucose intolerance and hepatic steatosis at baseline. In lean mice, CIH slightly increased HOMA index (from 1.79 ± 0.13 in control to 2.41 ± 0.26 in CIH; P = 0.05), whereas glucose tolerance was not affected. In contrast, in DIO mice, CIH doubled HOMA index (from 10.1 ± 2.1 in control to 22.5 ± 3.6 in CIH; P < 0.01), and induced severe glucose intolerance. In DIO mice, CIH induced NAFLD, inflammation, and oxidative stress, which was not observed in lean mice. In conclusion, CIH exacerbates IR and induces steatohepatitis in DIO mice, suggesting that CIH may account for metabolic dysfunction in obesity.
    Obesity 07/2011; 19(11):2167-74. DOI:10.1038/oby.2011.240 · 4.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A European Respiratory Society research seminar on "Metabolic alterations in obstructive sleep apnoea (OSA)" was jointly organised in October 2009 together with two EU COST actions (Cardiovascular risk in the obstructive sleep apnoea syndrome, action B26, and Adipose tissue and the metabolic syndrome, action BM0602) in order to discuss the interactions between obesity and OSA. Such interactions can be particularly significant in the pathogenesis of metabolic abnormalities and in increased cardiovascular risk in OSA patients. However, studying the respective role of OSA and obesity is difficult in patients, making it necessary to refer to animal models or in vitro systems. Since most OSA patients are obese, their management requires a multidisciplinary approach. This review summarises some aspects of the pathophysiology and treatment of obesity, and the possible effects of sleep loss on metabolism. OSA-associated metabolic dysfunction (insulin resistance, liver dysfunction and atherogenic dyslipidaemia) is discussed from the perspective of both obesity and OSA in adults and children. Finally, the effects of treatment for obesity or OSA, or both, on cardio-metabolic variables are summarised. Further interdisciplinary research is needed in order to develop new comprehensive treatment approaches aimed at reducing sleep disordered breathing, obesity and cardiovascular risk.
    European Respiratory Journal 09/2011; 39(3):746-67. DOI:10.1183/09031936.00047010 · 7.13 Impact Factor
  • New England Journal of Medicine 03/2012; 366(10):963-4; author reply 965-6. DOI:10.1056/NEJMc1200497#SA1 · 54.42 Impact Factor
Show more