Article

Ganoderma lucidum (Reishi) inhibits cancer cell growth and expression of key molecules in inflammatory breast cancer.

Department of Biochemistry, Universidad Central del Caribe, School of Medicine, Bayamón, Puerto Rico.
Nutrition and Cancer (Impact Factor: 2.7). 09/2011; 63(7):1085-94.
Source: PubMed

ABSTRACT Inflammatory breast cancer (IBC) is the most lethal and least understood form of advanced breast cancer. Its lethality originates from its nature of invading the lymphatic system and absence of a palpable tumor mass. Different from other metastatic breast cancer cells, IBC cells invade by forming tumor spheroids that retain E-cadherin-based cell-cell adhesions. Herein we describe the potential of the medicinal mushroom Ganoderma lucidum (Reishi) as an attractive candidate for anti-IBC therapy. Reishi contains biological compounds that are cytotoxic against cancer cells. We report the effects of Reishi on viability, apoptosis, invasion, and its mechanism of action in IBC cells (SUM-149). Results show that Reishi selectively inhibits cancer cell viability although it does not affect the viability of noncancerous mammary epithelial cells. Apoptosis induction is consistent with decreased cell viability. Reishi inhibits cell invasion and disrupts the cell spheroids that are characteristic of the IBC invasive pathology. Reishi decreases the expression of genes involved in cancer cell survival and proliferation (BCL-2, TERT, PDGFB), and invasion and metastasis (MMP-9), whereas it increases the expression of IL8. Reishi reduces BCL-2, BCL-XL, E-cadherin, eIF4G, p120-catenin, and c-Myc protein expression and gelatinase activity. These findings suggest that Reishi is an effective anti-IBC therapeutic.

0 Bookmarks
 · 
291 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hepatocellular carcinoma (HCC) is among the most lethal cancers. Mounting studies highlighted the essential role of the HGF/c-MET axis in driving HCC tumor progression. Therefore, c-Met is a potential therapeutic target for HCC. However, several concerns remain unresolved in c-Met targeting. First, the status of active c-Met in HCC must be screened to determine patients suitable for therapy. Second, resistance and side effects have been observed frequently when using conventional c-Met inhibitors. Thus, a preclinical system for screening the status of c-Met signaling and identifying efficient and safe anti-HCC agents is urgently required. In this study, immunohistochemical staining of phosphorylated c-Met (Tyr1234) on tissue sections indicated that HCCs with positive c-Met signaling accounted for approximately 46% in 26 cases. Second, many patient-derived HCC cell lines were established and characterized according to motility and c-Met signaling status. Moreover, LZ8, a medicinal peptide purified from the herb Lingzhi, featuring immunomodulatory and anticancer properties, was capable of suppressing cell migration and slightly reducing the survival rate of both c-Met positive and negative HCCs, HCC372, and HCC329, respectively. LZ8 also suppressed the intrahepatic metastasis of HCC329 in SCID mice. On the molecular level, LZ8 suppressed the expression of c-Met and phosphorylation of c-Met, ERK and AKT in HCC372, and suppressed the phosphorylation of JNK, ERK, and AKT in HCC329. According to receptor array screening, the major receptor tyrosine kinase activated in HCC329 was found to be the epidermal growth factor receptor (EGFR). Moreover, tyrosine-phosphorylated EGFR (the active EGFR) was greatly suppressed in HCC329 by LZ8 treatment. In addition, LZ8 blocked HGF-induced cell migration and c-Met-dependent signaling in HepG2. In summary, we designed a preclinical trial using LZ8 to prevent the tumor progression of patient-derived HCCs with c-Met-positive or -negative signaling.
    PLoS ONE 01/2015; 10(1):e0114495. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: - LZ-8, an immunomodulatory protein isolated from Ganoderma lucidum (also known as Ling-Zhi or Reishi), has been shown to promote cell proliferation and IL-2 production in T cells. In this study, we show that LZ-8 induces the expansion of both murine and human CD4(+) T cells into FOXP3(+) regulatory T (Treg) cells. LZ-8 treatment was found to stimulate a 4-fold and a 10-fold expansion in the Treg populations of murine and human primary CD4(+) T cells, respectively. In addition, the expression of CTLA-4 and IL-10 was induced in LZ-8-treated CD4(+) T cells. Using neutralizing antibodies and gene-deficient T-cell lines, we also found that LZ-8 promotes Treg expansion through a CD45-mediated signaling pathway and that the CD18-dependent induction of IL-2 was involved in Treg formation and IL-10 production. The suppressive activity of LZ-8 was confirmed using a murine model of DSS-induced colitis; the disease was alleviated by the adoptive transfer of LZ-8-treated CD4(+) T cells. In conclusion, a new regulatory function for LZ-8 was identified, and the molecular mechanisms underlying this function were elucidated.
    Evidence-based Complementary and Alternative Medicine 01/2013; 2013:513542. · 2.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract A detailed comparative study on chemical and bioactive properties of wild and cultivated Ganoderma lucidum from Serbia (GS) and China (GCN) was performed. This species was chosen because of its worldwide use as medicinal mushroom. Higher amounts of sugars were found in GS, while higher amounts of organic acids were recorded in GCN. Unsaturated fatty acids predominated over saturated fatty acids. GCN revealed higher antioxidant activity, while GS exhibited inhibitory potential against human breast and cervical carcinoma cell lines. No cytotoxicity in non-tumour liver primary cell culture was observed for the different samples. Both samples possessed antibacterial and antifungal activities, in some cases even better than the standard antimicrobial drugs. This is the first study reporting a comparison of chemical compounds and bioactivity of G. lucidum samples from different origins.
    International Journal of Food Sciences and Nutrition 09/2013; · 1.20 Impact Factor

Full-text (2 Sources)

Download
91 Downloads
Available from
Jun 5, 2014