Structure-based discovery of prescription drugs that interact with the norepinephrine transporter, NET

Department of Bioengineering and Therapeutic Sciences, and California Institute for Quantitative Biosciences, University of California, San Francisco, CA 94158, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 09/2011; 108(38):15810-5. DOI: 10.1073/pnas.1106030108
Source: PubMed

ABSTRACT The norepinephrine transporter (NET) transports norepinephrine from the synapse into presynaptic neurons, where norepinephrine regulates signaling pathways associated with cardiovascular effects and behavioral traits via binding to various receptors (e.g., β2-adrenergic receptor). NET is a known target for a variety of prescription drugs, including antidepressants and psychostimulants, and may mediate off-target effects of other prescription drugs. Here, we identify prescription drugs that bind NET, using virtual ligand screening followed by experimental validation of predicted ligands. We began by constructing a comparative structural model of NET based on its alignment to the atomic structure of a prokaryotic NET homolog, the leucine transporter LeuT. The modeled binding site was validated by confirming that known NET ligands can be docked favorably compared to nonbinding molecules. We then computationally screened 6,436 drugs from the Kyoto Encyclopedia of Genes and Genomes (KEGG DRUG) against the NET model. Ten of the 18 high-scoring drugs tested experimentally were found to be NET inhibitors; five of these were chemically novel ligands of NET. These results may rationalize the efficacy of several sympathetic (tuaminoheptane) and antidepressant (tranylcypromine) drugs, as well as side effects of diabetes (phenformin) and Alzheimer's (talsaclidine) drugs. The observations highlight the utility of virtual screening against a comparative model, even when the target shares less than 30% sequence identity with its template structure and no known ligands in the primary binding site.

Download full-text


Available from: Hao Fan, Jun 22, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The norepinephrine transporter (NET) has been demonstrated to be relevant to a multitude of neurological, psychiatric and cardiovascular pathologies. Due to the wide range of possible applications for PET imaging of the NET together with the limitations of currently available radioligands, novel PET tracers for imaging of the cerebral NET with improved pharmacological and pharmacodynamic properties are needed. The present study addresses the radiosynthesis and first preclinical evaluation of the novel NET PET tracer [(11)C]Me@HAPTHI by describing its affinity, selectivity, metabolic stability, plasma free fraction, blood-brain barrier (BBB) penetration and binding behaviour in in vitro autoradiography. [(11)C]Me@HAPTHI was prepared and displayed outstanding affinity and selectivity as well as excellent in vitro metabolic stability, and it is likely to penetrate the BBB. Moreover, selective NET binding in in vitro autoradiography was observed in human brain and rat heart tissue samples. All preclinical results and radiosynthetic key-parameters indicate that the novel benzothiadiazole dioxide-based PET tracer [(11)C]Me@HAPTHI is a feasible and improved NET radioligand and might prospectively facilitate clinical NET imaging.
    12/2015; 5(1):113. DOI:10.1186/s13550-015-0113-3
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transporters comprise the largest family of membrane proteins in human organism, including members of solute carrier transporter and ATP-binding cassette transporter families. They play pivotal roles in the absorption, distribution and excretion of xenobiotic and endogenous molecules. Transporters are widely expressed in various human tissues and are routinely evaluated during the process of drug development and approval. Over the past decade, increasing evidence shows that drug transporters are important in both normal physiology and disease. Currently, transporters are utilized as therapeutic targets to treat numerous diseases such as diabetes, major depression, hypertension and constipation. Despite the steady growth of the field of transporter biology, more than half of the members in transporter superfamily have little information available about their endogenous substrate(s) or physiological functions. This review outlines current research methods in transporter studies, and summarizes the drug-transporter interactions including drug-drug and drug-endogenous substrate interactions. In the end, we also discuss the therapeutic perspective of transporters based on their physiological and pathophysiological roles.
    Protein & Cell 03/2015; 6(5). DOI:10.1007/s13238-015-0148-2 · 2.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neuronal norepinephrine (NE) uptake is a crucial step in noradrenergic neurotransmission that regulates NE concentration in the synaptic cleft. It is a key mechanism mediated by the NE transporter (NET) which takes the neurotransmitter into the presynaptic neuron terminal or the adrenal medulla chromaffin cell. The activity of NET is short and long terms modulated by phosphorylation mediated by protein kinases A, C, and G and calcium-calmodulin-dependent protein kinase, whereas the transporter availability at the cell surface is regulated by glycosylation. Several neuropeptides like angiotensins II, III, and 1-7, bradykinin, natriuretic peptides, as well as endothelins (ETs) regulate a wide variety of biological effects, including noradrenergic transmission and in particular neuronal NE uptake. Diverse reports, including studies from our laboratory, show that ETs differentially modulate the activity and expression of NET not only in normal conditions but also in diverse cardiovascular diseases such as congestive heart failure and hypertension. Current literature supports a key role for the interaction between ETs and NE in maintaining neurotransmission homeostasis and further suggests that this interaction may represent a potential therapeutic target for various diseases, particularly hypertension. © 2015 Elsevier Inc. All rights reserved.
    Vitamins & Hormones 01/2015; 98:371-405. DOI:10.1016/bs.vh.2014.12.013 · 1.78 Impact Factor